31,359 research outputs found
Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm
An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research
Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements
Progress is given on work on: cross section measurements in the transmission window regions of the Schumann-Runge bands of oxygen; the determinations of predissociation linewidths; the theoretical calculation of band oscillator strengths of the Schumann-Runge absorption bands of O-16O-18; the determination of molecular spectroscopic constants; and the combined Herzberg continuum cross sections. The experimental investigations relevant to the cross section measurements, predissociation linewidths, and molecular spectroscopic constants are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), suitable for cross section measurements of molecular bands with discrete rotational structure. Such measurements are needed for accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photo-predissociation of O-16O-18 by solar radiation penetrating between the absorption lines of O-16(sub 2)
First-principles investigation of magnetism and electronic structures of substitutional transition-metal impurities in bcc Fe
The magnetic and electronic structures of impurity atoms from Sc to Zn
in ferromagnetic body-centered cubic iron are investigated using the
all-electron full-potential linearized augmented plane-wave method based on the
generalized gradient approximation (GGA). We found that in general, the GGA
results are closer to the experimental values than those of the local spin
density approximation. The calculated formation enthalpy data indicate the
importance of a systematic study on the ternary Fe-C- systems rather than
the binary Fe- systems, in steel design. The lattice parameters are
optimized and the conditions for spin polarization at the impurity sites are
discussed in terms of the local Stoner model. Our calculations, which are
consistent with previous work, imply that the local spin-polarizations at Sc,
Ti, V, Cu, and Zn are induced by the host Fe atoms. The early transition-metal
atoms couple antiferromagnetically, while the late transition-metal atoms
couple ferromagnetically, to the host Fe atoms. The calculated total
magnetization () of bcc Fe is reduced by impurity elements from Sc to Cr as
a result of the antiferromagnetic interaction, with the opposite effect for
solutes which couple ferromagnetically. The changes in are attributed to
nearest neighbor interactions, mostly between the impurity and host atoms. The
atom averaged magnetic moment is shown to follow generally the well-known
Slater-Pauling curve, but our results do not follow the linearity of the
Slater-Pauling curve. We attribute this discrepancy to the weak ferromagnetic
nature of bcc Fe. The calculated Fermi contact hyperfine fields follow the
trend of the local magnetic moments. The effect of spin-orbit coupling is found
not to be significant although it comes into prominence at locations far from
the impurity sites.Comment: 26 pages, 11 figure
The strange quark condensate in the nucleon in 2+1 flavor QCD
We calculate the "strange quark content of the nucleon", ,
which is important for interpreting the results of some dark matter detection
experiments. The method is to evaluate quark-line disconnected correlations on
the MILC lattice ensembles, which include the effects of dynamical strange
quarks. After continuum and chiral extrapolations, the result is <N |s s_bar
|N> = 0.69 +- 0.07(statistical) +- 0.09(systematic), in the modified minimal
subtraction scheme (2 GeV), or for the renormalization scheme invariant form,
m_s partial{M_N}/partial{m_s} = 59(6)(8) MeV.Comment: Added figures and references, especially for fit range choice. Other
changes for clarity. Version to appear in publicatio
Magnetization of La(2-x)Sr(x)NiO(4+ delta) (0 < x < 0.5) and observation of novel memory effects
We have studied the magnetization of a series of spin-charge ordered
La(2-x)Sr(x)NiO(4+delta) single crystals with 0 < x < 0.5. For fields applied
parallel to the ab plane there is a large irreversibility below a temperature
T(F1) ~ 50 K and a smaller irreversibility that persists up to near the charge
ordering temperature. We observed a novel memory effect in the thermo-remnant
magnetization across the entire doping range. We found that these materials
retain a memory of the temperature at which an external field was removed, and
that there is a pronounced increase in the thermo-remnant magnetization when
the system is warmed through a spin reorientation transition.Comment: 11 pages, 12 figure
Understanding jumping to conclusions in patients with persecutory delusions: working memory and intolerance of uncertainty
Background. Persecutory delusions are a key psychotic experience. A reasoning style known as ‘jumping to conclusions’ (JTC) – limited information gathering before reaching certainty in decision making – has been identified as a contributory factor in the occurrence of delusions. The cognitive processes that underpin JTC need to be determined in order to develop effective interventions for delusions. In the current study two alternative perspectives were tested: that JTC partially results from impairment in information-processing capabilities and that JTC is a motivated strategy to avoid uncertainty.Method. A group of 123 patients with persistent persecutory delusions completed assessments of JTC (the 60:40 beads task), IQ, working memory, intolerance of uncertainty, and psychiatric symptoms. Patients showing JTC were compared with patients not showing JTC.Results. A total of 30 (24%) patients with delusions showed JTC. There were no differences between patients who did and did not jump to conclusions in overall psychopathology. Patients who jumped to conclusions had poorer working memory performance, lower IQ, lower intolerance of uncertainty and lower levels of worry.Working memory and worry independently predicted the presence of JTC.Conclusions. Hasty decision making in patients with delusions may partly arise from difficulties in keeping information in mind. Interventions for JTC are likely to benefit from addressing working memory performance, while in vivo techniques for patients with delusions will benefit from limiting the demands on working memory. The study provides little evidence for a contribution to JTC from top down motivational beliefs about uncertainty
The intrinsic strangeness and charm of the nucleon using improved staggered fermions
We calculate the intrinsic strangeness of the nucleon, - ,
using the MILC library of improved staggered gauge configurations using the
Asqtad and HISQ actions. Additionally, we present a preliminary calculation of
the intrinsic charm of the nucleon using the HISQ action with dynamical charm.
The calculation is done with a method which incorporates features of both
commonly-used methods, the direct evaluation of the three-point function and
the application of the Feynman- Hellman theorem. We present an improvement on
this method that further reduces the statistical error, and check the result
from this hybrid method against the other two methods and find that they are
consistent. The values for and found here, together with
perturbative results for heavy quarks, show that dark matter scattering through
Higgs-like exchange receives roughly equal contributions from all heavy quark
flavors.Comment: 17 pages, 14 figure
Resistivity network and structural model of the oxide cathode for CRT application
In this paper, the electrical properties of oxide cathode
and oxide cathode plus, supplied by LG Philips Displays, have been
investigated in relation to different cathode activation regimes and
methods. Oxide cathode activation treatment for different durations
has been investigated. The formations of the compounds associated
to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used as analytical techniques.
Al, W, and Mg doping elements take place during heating to 1080 K (Ni-Brightness) under a rich controlled Ba–SrO atmosphere through an acceleration life test. The chemical transport of these elements was occurred mainly by the Ni cap grain boundary mechanism with significant pile-up of Mg compounds. Al and W show a superficial concentrations and distribution.
A new structural and resistivity network model of oxide cathode plus are suggested. The new structural model shows a number of metallic and metallic oxide pathways are exist at the interface or extended through the oxide coating. The effective values of the resistances
and the type of the equivalent circuit in the resistivity network
model are temperature and activation time dependent.</p
Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota
Copyright: 2014 Crowther et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The human gastrointestinal tract harbours a complex microbial community which exist in planktonic and sessile form. The degree to which composition and function of faecal and mucosal microbiota differ remains unclear. We describe the development and characterisation of an in vitro human gut model, which can be used to facilitate the formation and longitudinal analysis of mature mixed species biofilms. This enables the investigation of the role of biofilms in Clostridium difficile infection (CDI). A well established and validated human gut model of simulated CDI was adapted to incorporate glass rods that create a solid-gaseous-liquid interface for biofilm formation. The continuous chemostat model was inoculated with a pooled human faecal emulsion and controlled to mimic colonic conditions in vivo. Planktonic and sessile bacterial populations were enumerated for up to 46 days. Biofilm consistently formed macroscopic structures on all glass rods over extended periods of time, providing a framework to sample and analyse biofilm structures independently. Whilst variation in biofilm biomass is evident between rods, populations of sessile bacterial groups (log10 cfu/g of biofilm) remain relatively consistent between rods at each sampling point. All bacterial groups enumerated within the planktonic communities were also present within biofilm structures. The planktonic mode of growth of C. difficile and gut microbiota closely reflected observations within the original gut model. However, distinct differences were observed in the behaviour of sessile and planktonic C. difficile populations, with C. difficile spores preferentially persisting within biofilm structures. The redesigned biofilm chemostat model has been validated for reproducible and consistent formation of mixed species intestinal biofilms. This model can be utilised for the analysis of sessile mixed species communities longitudinally, potentially providing information of the role of biofilms in CDI.Peer reviewe
- …