230 research outputs found

    Genetics of early growth traits

    Get PDF
    This is the author accepted manuscript. the final version is available from Oxford University Press via the DOI in this recordIn recent years, genome-wide association studies have shed light on the genetics of early growth and its links with later-life health outcomes. Large-scale datasets and meta-analyses, combined with recently developed analytical methods, have enabled dissection of the maternal and fetal genetic contributions to variation in birth weight. Additionally, longitudinal approaches have shown differences between the genetic contributions to infant, childhood and adult adiposity. In contrast, studies of adult height loci have shown strong associations with early body length and childhood height. Early growth-associated loci provide useful tools for causal analyses: Mendelian randomization (MR) studies have provided evidence that early BMI and height are causally related to a number of adult health outcomes. We advise caution in the design and interpretation of MR studies of birth weight investigating effects of fetal growth on later-life cardiometabolic disease because birth weight is only a crude indicator of fetal growth, and the choice of genetic instrument (maternal or fetal) will greatly influence the interpretation of the results. Most genetic studies of early growth have to date centered on European-ancestry participants and outcomes measured at a single time-point, so key priorities for future studies of early growth genetics are aggregation of large samples of diverse ancestries and longitudinal studies of growth trajectories.Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of HealthWellcome TrustRoyal Societ

    Parental diabetes and birthweight in 236 030 individuals in the UK biobank study

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.BACKGROUND: The UK Biobank study provides a unique opportunity to study the causes and consequences of disease. We aimed to use the UK Biobank data to study the well-established, but poorly understood, association between low birthweight and type 2 diabetes. METHODS: We used logistic regression to calculate the odds ratio for participants' risk of type 2 diabetes given a one standard deviation increase in birthweight. To test for an association between parental diabetes and birthweight, we performed linear regression of self-reported parental diabetes status against birthweight. We performed path and mediation analyses to test the hypothesis that birthweight partly mediates the association between parental diabetes and participant type 2 diabetes status. RESULTS: Of the UK Biobank participants, 277 261 reported their birthweight. Of 257 715 individuals of White ethnicity and singleton pregnancies, 6576 had type 2 diabetes, 19 478 reported maternal diabetes (but not paternal), 20 057 reported paternal diabetes (but not maternal) and 2754 participants reported both parents as having diabetes. Lower birthweight was associated with type 2 diabetes in the UK Biobank participants. A one kilogram increase in birthweight was associated with a lower risk of type 2 diabetes (odds ratio: 0.74; 95% CI: 0.71, 0.76; P = 2 × 10(-57)). Paternal diabetes was associated with lower birthweight (45 g lower; 95% CI: 36, 54; P = 2 × 10(-23)) relative to individuals with no parental diabetes. Maternal diabetes was associated with higher birthweight (59 g increase; 95% CI: 50, 68; P = 3 × 10(-37)). Participants' lower birthweight was a mediator of the association between reported paternal diabetes and participants' type 2 diabetes status, explaining 1.1% of the association, and participants' higher birthweight was a mediator of the association between reported maternal diabetes and participants' type 2 diabetes status, explaining 1.2% of the association. CONCLUSIONS: Data from the UK Biobank provides the strongest evidence by far that paternal diabetes is associated with lower birthweight, whereas maternal diabetes is associated with increased birthweight. Our findings with paternal diabetes are consistent with a role for the same genetic factors influencing foetal growth and type 2 diabetes.ERDF (European Regional Development Fund)ESF (European Social Fund) Convergence Programme for Cornwall and the Isles of ScillyWellcome TrustThe European Research CouncilDiabetes U

    Common genetic variants with fetal effects on birth weight are enriched for proximity to genes implicated in rare developmental disorders

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordData availability: This study makes use of data generated by the DECIPHER community. A full list of centres who contributed to the generation of the data is available from https://decipher.sanger.ac.uk and via email from [email protected] weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of underlying causal genes is crucial to understand how these loci influence birth weight, and links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritise candidate genes at GWAS loci. We examined the proximity of genes implicated in developmental disorders to birth weight GWAS loci, using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected, both when the developmental disorder gene is the nearest gene to the birth weight SNP and also examining all genes within 258kb of the SNP. This enrichment was driven by genes causing monogenic developmental disorders with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight which could not previously be classified as fetal or maternal due to insufficient statistical power.Wellcome TrustRoyal Societ

    Two decades since the fetal insulin hypothesis: what have we learned from genetics?

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Data availability: This review did not generate any new data.In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.Wellcome TrustNational Institute of Health Research (NIHR)Royal Societ

    Monogenic disease analysis establishes that fetal insulin accounts for half of human fetal growth

    Get PDF
    This is the final version. Available on open access from the American Society for Clinical Investigation via the DOI in this recordWellcome TrustDiabetes UKNational Institute for Health and Care Research (NIHR

    The Birth Weight Lowering C-Allele of rs900400 Near LEKR1 and CCNL1 Associates with Elevated Insulin Release following an Oral Glucose Challenge

    Get PDF
    BACKGROUND AND AIM:The first genome-wide association study on birth weight was recently published and the most significant associated birth weight lowering variant was the rs900400 C-allele located near LEKR1 and CCNL1. We aimed to replicate the association with birth weight in the Danish Inter99 study and furthermore to evaluate associations between rs900400 and indices of insulin secretion and insulin sensitivity obtained by oral glucose tolerance tests in adults from the Danish Inter99 study and the Finnish, Metabolic Syndrome in Men (METSIM) sample. METHODS:For 4,744 of 6,784 Inter99 participants, midwife journals were traced through the Danish State Archives and association of rs900400 with birth weight was examined. Associations between rs900400 and fasting serum insulin, fasting plasma glucose, insulinogenic index, homeostasis model assessment of insulin resistance (HOMA-IR) and disposition index were studied in 5,484 Danish and 6,915 Finnish non-diabetic individuals and combined in meta-analyses. RESULTS:The C-allele of rs900400 was associated with a 22.1 g lower birth weight ([-41.3;-3.0], P = 0.024) per allele. Moreover, in combined analyses of the Danish Inter99 study and the Finnish METSIM study we found that the birth weight lowering allele was associated with increased insulin release measured by the insulinogenic index (β = 2.25% [0.59; 3.91], P = 0.008) and with an increased disposition index (β = 1.76% [0.04; 3.49], P = 0.05). CONCLUSION:The birth weight lowering effect of the C-allele of rs900400 located near LEKR1 and CCNL1 was replicated in the Danish population. Furthermore the C-allele was associated with increased insulin response following oral glucose stimulation in a meta-analysis based on Danish and Finnish non-diabetic individuals

    Assessing whether genetic scores explain extra variation in birthweight, when added to clinical and anthropometric measures

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials The datasets analysed during the current study (EFSOCH) can be requested for access by writing in the first instance to the EFSOCH data team via the Exeter Clinical Research Facility [email protected]. The GWAS summary statistics for birthweight that were used to generate the genetic scores are publicly available can be downloaded from http://egg-consortium.org/BACKGROUND: Human birthweight is a complex, multifactorial trait. Maternal characteristics contribute to birthweight variation by influencing the intrauterine environment. Variation explained by genetic effects is also important, but their contributions have not been assessed alongside other key determinants. We aimed to investigate variance in birthweight explained by genetic scores in addition to easily-measurable clinical and anthropometric variables. METHODS: We analysed 549 European-ancestry parent-offspring trios from a UK community-based birth cohort. We investigated variance explained in birthweight (adjusted for sex and gestational age) in multivariable linear regression models including genetic scores, routinely-measured maternal characteristics, and parental anthropometric variables. We used R-Squared (R2) to estimate variance explained, adjusted R-squared (Adj-R2) to assess improvement in model fit from added predictors, and F-tests to compare nested models. RESULTS: Maternal and fetal genetic scores together explained 6.0% variance in birthweight. A model containing maternal age, weight, smoking, parity and 28-week fasting glucose explained 21.7% variance. Maternal genetic score explained additional variance when added to maternal characteristics (Adj-R2 = 0.233 vs Adj-R2 = 0.210, p < 0.001). Fetal genetic score improved variance explained (Adj-R2 = 0.264 vs 0.248, p < 0.001) when added to maternal characteristics and parental heights. CONCLUSIONS: Genetic scores account for variance explained in birthweight in addition to easily measurable clinical variables. Parental heights partially capture fetal genotype and its contribution to birthweight, but genetic scores explain additional variance. While the genetic contribution is modest, it is comparable to that of individual clinical characteristics such as parity, which suggests that genetics could be included in tools aiming to predict risk of high or low birthweights.Diabetes UKWellcome TrustNational Institute for Health and Care Research (NIHR

    Gene-obesogenic environment interactions in the UK Biobank study

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI). METHODS: We used up to 120 000 adults from the UK Biobank study to test the hypothesis that high-risk obesogenic environments and behaviours accentuate genetic susceptibility to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for obesity and 12 measures of the obesogenic environment as exposures. These measures included Townsend deprivation index (TDI) as a measure of socio-economic position, TV watching, a 'Westernized' diet and physical activity. We performed several negative control tests, including randomly selecting groups of different average BMIs, using a simulated environment and including sun-protection use as an environment. RESULTS: We found gene-environment interactions with TDI (Pinteraction = 3 × 10(-10)), self-reported TV watching (Pinteraction = 7 × 10(-5)) and self-reported physical activity (Pinteraction = 5 × 10(-6)). Within the group of 50% living in the most relatively deprived situations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg extra weight. The interactions were weaker, but present, with the negative controls, including sun-protection use, indicating that residual confounding is likely. CONCLUSIONS: Our findings suggest that the obesogenic environment accentuates the risk of obesity in genetically susceptible adults. Of the factors we tested, relative social deprivation best captures the aspects of the obesogenic environment responsible.J.T. is funded by a Diabetes Research and Wellness Foundation Fellowship. S.E.J. is funded by the Medical Research Council (grant: MR/M005070/1). M.A.T., M.N.W. and A.M. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). A.R.W., H.Y. and T.M.F. are supported by the European Research Council grant: 323195:SZ-245 50371- GLUCOSEGENES-FP7-IDEAS-ERC. R.M.F. is a Sir Henry Dale Fellow (Wellcome Trust and Royal Society grant: 104150/Z/14/Z). R.B. is funded by the Wellcome Trust and Royal Society grant: 104150/Z/14/Z. R.M.A is supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). Z.K. is funded by Swiss National Science Foundation (31003A-143914). The funders had no influence on study design, data collection and analysis, decision to publish or preparation of the manuscript. The data reported in this paper are available via application directly to the UK Biobank

    Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index

    Get PDF
    Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers, but its association with BMI is unknown. We hypothesized that genotype would accurately reflect smoking exposure and that, if smoking were causally related to weight, it would be associated with BMI in smokers, but not in never smokers

    Smoking during pregnancy and its effect on placental weight: a Mendelian randomization study

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: The data in ALSPAC is fully available, via managed systems, to any researchers. The managed system is a requirement of the study funders, but access is not restricted on the basis of overlap with other applications to use the data or on the basis of peer review of the proposed science. The ALSPAC data management plan describes in detail the policy regarding data sharing, which is through a system of managed open access. The following steps highlight how to apply for access to the data included in this paper and all other ALSPAC data. (1) Please read the ALSPAC access policy, which describes the process of accessing the data and samples in detail and outlines the costs associated with doing so. (2) You may also find it useful to browse the fully searchable ALSPAC research proposals database, which lists all research projects that have been approved since April 2011. (3) Please submit your research proposal for consideration by the ALSPAC Executive Committee. You will receive a response within 10 working days to advise you whether your proposal has been approved. If you have any questions about accessing data, please email [email protected]. Data from the Norwegian Mother, Father and Child Cohort Study and the Medical Birth Registry of Norway used in this study are managed by the national health register holders in Norway (Norwegian Institute of public health) and can be made available to researchers, provided approval from the Regional Committees for Medical and Health Research Ethics (REC), compliance with the EU General Data Protection Regulation (GDPR) and approval from the data owners. The consent given by the participants does not open for storage of data on an individual level in repositories or journals. Researchers who want access to data sets for replication should apply through helsedata.no. Access to data sets requires approval from The Regional Committee for Medical and Health Research Ethics in Norway and an agreement with MoBa.Background The causal relationship between maternal smoking in pregnancy and reduced offspring birth weight is well established and is likely due to impaired placental function. However, observational studies have given conflicting results on the association between smoking and placental weight. We aimed to estimate the causal effect of newly pregnant mothers quitting smoking on their placental weight at the time of delivery. Methods We used one-sample Mendelian randomization, drawing data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (N = 690 to 804) and the Norwegian Mother, Father and Child Cohort Study (MoBa) (N = 4267 to 4606). The sample size depends on the smoking definition used for different analyses. The analysis was performed in pre-pregnancy smokers only, due to the specific role of the single-nucleotide polymorphism (SNP) rs1051730 (CHRNA5 – CHRNA3 – CHRNB4) in affecting smoking cessation but not initiation. Results Fixed effect meta-analysis showed a 182 g [95%CI: 29,335] higher placental weight for pre-pregnancy smoking mothers who continued smoking at the beginning of pregnancy, compared with those who stopped smoking. Using the number of cigarettes smoked per day in the first trimester as the exposure, the causal effect on placental weight was 11 g [95%CI: 1,21] per cigarette per day. Similarly, smoking at the end of pregnancy was causally associated with higher placental weight. Using the residuals of birth weight regressed on placental weight as the outcome, we showed evidence of lower offspring birth weight relative to the placental weight, both for continuing smoking at the start of pregnancy as well as continuing smoking throughout pregnancy (change in z-score birth weight adjusted for z-score placental weight: -0.8 [95%CI: -1.6,-0.1]). Conclusion Our results suggest that continued smoking during pregnancy causes higher placental weights
    corecore