138 research outputs found

    The Apparent Manufacturer Doctrine, Trademark Licensors and the Third Restatement of Torts

    Get PDF

    Beyond Dilution: Toward a Coherent Theory of the Anti Free Rider Impulse in American Trademark Law

    Get PDF
    This article argues for a fundamental shift in the way famous trademarks are protected under American trademark law. Currently, famous marks are protected by dilution law, which purports to prevent a particular kind of harm (i.e., the gradual whittling away of the commercial magnetism of a famous mark). The article argues that this is the wrong focus of famous mark protection, because dilution is an illusory concept; it either does not exist, or it is so difficult to prove, that it is an ineffective and misleading doctrinal tool. The article contends that American trademark law should move from the harm-based theory of dilution law to a free rider principle that looks at just deserts -- that is, at who should be benefitting from the investment and labor that go into making a mark famous. Under this principle, famous mark owners would be able to protect their marks against unjustified free riding without having to prove that those marks were losing commercial magnestism or selling power due to the defendant\u27s activities. The article shows, moreover, that the anti free rider principle is more helpful than existing dilution rhetoric in explaining the outcomes of many reported dilution cases. Finally, the article examines the possible countervailing interests of persons who may wish to use trademarks that are similar or identical to famous marks. The article shows that the anti free rider approach advanced here would be more effective than current dilution law at locating proper boundaries on famous mark protection

    Sleep Apnea Is Associated with Hearing Impairment: The Hispanic Community Health Study/Study of Latinos

    Get PDF
    Sleep apnea (SA) may promote hearing impairment (HI) through ischemia and inflammation of the cochlea. Our objective was to assess an independent association between SA and HI in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants

    Chip-Based Laser with 1 Hertz Integrated Linewidth

    Full text link
    Lasers with hertz-level linewidths on timescales up to seconds are critical for precision metrology, timekeeping, and manipulation of quantum systems. Such frequency stability typically relies on bulk-optic lasers and reference cavities, where increased size is leveraged to improve noise performance, but with the trade-off of cost, hand assembly, and limited application environments. On the other hand, planar waveguide lasers and cavities exploit the benefits of CMOS scalability but are fundamentally limited from achieving hertz-level linewidths at longer times by stochastic noise and thermal sensitivity inherent to the waveguide medium. These physical limits have inhibited the development of compact laser systems with frequency noise required for portable optical clocks that have performance well beyond conventional microwave counterparts. In this work, we break this paradigm to demonstrate a compact, high-coherence laser system at 1548 nm with a 1 s integrated linewidth of 1.1 Hz and fractional frequency instability less than 1014^{-14} from 1 ms to 1 s. The frequency noise at 1 Hz offset is suppressed by 11 orders of magnitude from that of the free-running diode laser down to the cavity thermal noise limit near 1 Hz2^2/Hz, decreasing to 103^{-3} Hz2^2/Hz at 4 kHz offset. This low noise performance leverages wafer-scale integrated lasers together with an 8 mL vacuum-gap cavity that employs micro-fabricated mirrors with sub-angstrom roughness to yield an optical QQ of 11.8 billion. Significantly, all the critical components are lithographically defined on planar substrates and hold the potential for parallel high-volume manufacturing. Consequently, this work provides an important advance towards compact lasers with hertz-level linewidths for applications such as portable optical clocks, low-noise RF photonic oscillators, and related communication and navigation systems

    Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways

    Get PDF
    Anosmin-1, encoded by the KAL1 gene, is an extracellular matrix (ECM)-associated protein which plays essential roles in the establishment of olfactory and GNRH neurons during early brain development. Loss-of-function mutations of KAL1 results in Kallmann syndrome with delayed puberty and anosmia. There is, however, little comprehension of its role in the developed brain. As reactivation of developmental signal pathways often takes part in tumorigenesis, we investigated if anosmin-1-mediated cellular mechanisms associated with brain tumors. Our meta-analysis of gene expression profiles of patients' samples and public microarray datasets indicated that KAL1 mRNA was significantly upregulated in high-grade primary brain tumors compared with the normal brain and low-grade tumors. The tumor-promoting capacity of anosmin-1 was demonstrated in the glioblastoma cell lines, where anosmin-1 enhanced cell motility and proliferation. Notably, anosmin-1 formed a part of active β1 integrin complex, inducing downstream signaling pathways. ShRNA-mediated knockdown of anosmin-1 attenuated motility and growth of tumor cells and induced apoptosis. Anosmin-1 may also enhance the invasion of tumor cells within the ECM by modulating cell adhesion and activating extracellular proteases. In a mouse xenograft model, anosmin-1-expressing tumors grew faster, indicating the role of anosmin-1 in tumor microenvironment in vivo. Combined, these data suggest that anosmin-1 can facilitate tumor cell proliferation, migration, invasion, and survival. Therefore, although the normal function of anosmin-1 is required in the proper development of GNRH neurons, overexpression of anosmin-1 in the developed brain may be an underlying mechanism for some brain tumors

    Hearing Impairment Prevalence and Associated Risk Factors in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Hearing impairment (HI) is a common problem in adults but there have been few studies of hearing in the U.S. Hispanic/Latino population. Little is known about factors associated with HI among Hispanics/Latinos

    Reactor physics project final report

    Get PDF
    "September 30, 1970."Statement of responsibility on title-page reads: Editors, M. J. Driscoll, I. Kaplan, D. D. Lanning, N. C. Rasmussen. Contributors: V. K. Agarwala, F. M. Clikeman, M. J. Driscoll, Y. Hukai, L. L. Izzo, I. Kaplan, M. S. Kazimi, D.D. Lanning, T.C. Leung, E.L. McFarland, N.C. Rasmussen, S.S. Seth, G.E. Sullivan, and A.T. SuppleIncludes bibliographical referencesFinal report; January 1, 1968 to September 30, 1970This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, 1968 through September 30, 1970. In addition to summarizing results for the entire contract period, this report also serves as the final annual report; thus, work completed in the period of October 1, 1969 through September 30, 1970 is dealt with in more detail than the earlier work. Methods were developed to measure the heterogeneous parameters 17, [Gamma] [eta] and [Alpha] for single fuel elements immersed in moderator in an exponential tank using foil activation measurements external to the fuel. These methods were applied to clustered fuel rods in D 20 moderator and single fuel rods in H 20 moderator, and the results were extended to and compared with data on complete multi-element lattices reported by other laboratories. Advanced gamma spectrometric methods using Ge(Li) detectors were applied to the analysis of both prompt and fission product decay gammas for the nondestructive analysis of the fuel used in this work. The latter includes both simulated burned fuel containing plutonium and actual burned fuel irradiated to 20,000 MWD/T in the Dresden BWR.U.S. Atomic Energy Commission contract AT (30-1)-394

    Stellar Spectroscopy in the Near-infrared with a Laser Frequency Comb

    Full text link
    The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy
    corecore