67 research outputs found

    ORGANOSILICON BIOTECHNOLOGY: A BIO-INSPIRED APPROACH TO THE HYDROLYSIS OF ALKOXYSILANES and THE LIPASE-CATALYZED SYNTHESIS OF SILOXANE-CONTAINING POLYESTERS AND POLYAMIDES

    Get PDF
    The first part of this thesis studied the capacity of amino acids and enzymes to catalyze the hydrolysis and condensation of tetraethoxysilane and phenyltrimethoxysilane. Selected amino acids were shown to accelerate the hydrolysis and condensation of tetraethoxysilane under ambient temperature, pressure and at neutral pH (pH 7±0.02). The nature of the side chain of the amino acid was important in promoting hydrolysis and condensation. Several proteases were shown to have a capacity to hydrolyze tri- and tet-ra- alkoxysilanes under the same mild reaction conditions. The second part of this thesis employed an immobilized Candida antarctica lipase B (Novozym-435, N435) to produce siloxane-containing polyesters, polyamides, and polyester amides under solvent-free conditions. Enzymatic activity was shown to be temperature dependent, increasing until enzyme denaturation became the dominant pro-cess, which typically occurred between 120-130ᵒC. The residual activity of N435 was, on average, greater than 90%, when used in the synthesis of disiloxane-containing polyesters, regardless of the polymerization temperature except at the very highest temperatures, 140-150ᵒC. A study of the thermal tolerance of N435 determined that, over ten reaction cycles, there was a decrease in the initial rate of polymerization with each consecutive use of the catalyst. No change in the degree of monomer conversion after a 24 hour reaction cycle was found

    A calorimetric, volumetric and combined SANS and SAXS study of hybrid siloxane phosphocholine bilayers

    Get PDF
    Siloxanes are molecules used extensively in commercial, industrial, and biomedical applications. The inclusion of short siloxane chains into phospholipids results in interesting physical properties, including the ability to form low polydispersity unilamellar vesicles. As such, hybrid siloxane phosphocholines (SiPCs) have been examined as a potential platform for the delivery of therapeutic agents. Using small angle X-ray and neutron scattering, vibrating tube densitometry, and differential scanning calorimetry, we studied four hybrid SiPCs bilayers. Lipid volume measurements for the different SiPCs compared well with those previously determined for polyunsaturated PCs. Furthermore, the different SiPC\u27s membrane thicknesses increased monotonically with temperature and, for the most part, consistent with the behavior observed in unsaturated lipids such as, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, and the branched lipid 1,2-diphytanoyl-sn-glyerco-3-phosphocholine (DPhyPC)

    A chemoenzymatic route to chiral siloxanes

    Get PDF
    An approach employing two enzymes—toluene dioxygenase and immobilized lipase B from Candida antarctica (N435)—was explored as a potential biocatalytic method for the coupling of chiral diols with siloxane species. Analysis of reaction mixtures using1H NMR spectroscopy suggested that up to 66% consumption of the siloxane starting materials had occurred. Oligomeric species were observed and chiral products from the coupling of a cyclic diol with a siloxane molecule were isolated and characterized by MALDI-ToF MS and GPC. Immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus were also explored as potential catalysts for the coupling reactions, however, their use only returned starting material

    Gradient instability for w < -1

    Get PDF
    We show that in single scalar field models of the dark energy with equations of state satisfying wp/ρ<1w \equiv p / \rho < -1, the effective Lagrangian for fluctuations about the homogeneous background has a wrong sign spatial kinetic term. In most cases, spatial gradients are ruled out by microwave background observations. The sign of w+1w+1 is not connected to the sign of the time derivative kinetic term in the effective Lagrangian.Comment: revtex4, 8 pages, 1 figure. v2: corrected typo in Eq. 16, added references and a paragraph on quintessence models; v3: reordering of references. To appear in Phys. Lett.

    An Elusive Z' Coupled to Beauty

    Full text link
    By extending the standard gauge group to SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X with X charges carried only by the third family we accommodate the LEP measurement of R_b and predict a potentially measurable discrepancy in A_{FB}^{b} in e^+e^- scattering and that D^0\bar{D}^0 mixing may be near its experimental limit. The Z', which explicitly violates the GIM mechanism, can nevertheless be naturally consistent with FCNC constraints. Direct detection of the Z' is possible but challenging.Comment: 12 pages, plus 1 Postscript figure, uses revtex, Discussion of FCNC extende

    Can the dark energy equation-of-state parameter w be less than -1?

    Full text link
    Models of dark energy are conveniently characterized by the equation-of-state parameter w=p/\rho, where \rho is the energy density and p is the pressure. Imposing the Dominant Energy Condition, which guarantees stability of the theory, implies that w \geq -1. Nevertheless, it is conceivable that a well-defined model could (perhaps temporarily) have w<-1, and indeed such models have been proposed. We study the stability of dynamical models exhibiting w<-1 by virtue of a negative kinetic term. Although naively unstable, we explore the possibility that these models might be phenomenologically viable if thought of as effective field theories valid only up to a certain momentum cutoff. Under our most optimistic assumptions, we argue that the instability timescale can be greater than the age of the universe, but only if the cutoff is at or below 100 MeV. We conclude that it is difficult, although not necessarily impossible, to construct viable models of dark energy with w<-1; observers should keep an open mind, but the burden is on theorists to demonstrate that any proposed new models are not ruled out by rapid vacuum decay.Comment: 29 pages, 8 figures, minor corrections, reference adde
    corecore