268 research outputs found

    Market-Based Emissions Regulation and Industry Dynamics

    Get PDF
    We assess the long-run dynamic implications of market-based regulation of carbon dioxide emissions in the US Portland cement industry. We consider several alternative policy designs, including mechanisms that use production subsidies to partially offset compliance costs and border tax adjustments to penalize emissions associated with foreign imports. Our results highlight two general countervailing market distortions. First, following Buchanan (1969), reductions in product market surplus and allocative inefficiencies due to market power in the domestic cement market counteract the social benefits of carbon abatement. Second, tradeexposure to unregulated foreign competitors leads to emissions “leakage” which offsets domestic emissions reductions. Taken together, these forces result in social welfare losses under policy regimes that fully internalize the emissions externality. In contrast, market-based policies that incorporate design features to mitigate the exercise of market power and emissions leakage can deliver welfare gains

    What Do Emissions Markets Deliver and to Whom? Evidence from Southern California's NOx Trading Program

    Get PDF
    A perceived advantage of cap-and-trade programs over more prescriptive environmental regulation is that enhanced compliance flexibility and cost effectiveness can make more stringent emissions reductions politically feasible. However, increased compliance flexibility can also result in an inequitable distribution of pollution. We investigate these issues in the context of Southern California's RECLAIM program. We match facilities in RECLAIM with similar California facilities also located in non-attainment areas. Our results indicate that emissions fell approximately 24 percent, on average, at RECLAIM facilities relative to our counterfactual. Furthermore, we find that observed changes in emissions do not vary significantly with neighborhood demographic characteristics.

    Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

    Full text link
    We study phenomenological implications of the ATLAS and CMS hint of a 125±1125\pm 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric dark matter models, and for the phenomenology of the CMSSM. We show that in scalar dark matter models the vacuum stability bound on Higgs boson mass is lower than in the standard model and the 125 GeV Higgs boson is consistent with the models being valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM parameter space keeping the Higgs boson mass fixed to 125±1125\pm 1 GeV, and study in detail the freeze-out processes that imply the observed amount of dark matter. After imposing all phenomenological constraints except for the muon (g2)μ,(g-2)_\mu, we show that the CMSSM parameter space is divided into well separated regions with distinctive but in general heavy sparticle mass spectra. Imposing the (g2)μ(g-2)_\mu constraint introduces severe tension between the high SUSY scale and the experimental measurements -- only the slepton co-annihilation region survives with potentially testable sparticle masses at the LHC. In the latter case the spin-independent DM-nucleon scattering cross section is predicted to be below detectable limit at the XENON100 but might be of measurable magnitude in the general case of light dark matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio

    MFV Reductions of MSSM Parameter Space

    Full text link
    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tanβ10\tan \beta \sim 10 with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for publication in JHE

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE

    Combined collider constraints on neutralinos and charginos

    Get PDF
    Searches for supersymmetric electroweakinos have entered a crucial phase, as the integrated luminosity of the Large Hadron Collider is now high enough to compensate for their weak production cross-sections. Working in a framework where the neutralinos and charginos are the only light sparticles in the Minimal Supersymmetric Standard Model, we use GAMBIT to perform a detailed likelihood analysis of the electroweakino sector. We focus on the impacts of recent ATLAS and CMS searches with Open image in new window of 13 TeV proton-proton collision data. We also include constraints from LEP and invisible decays of the Z and Higgs bosons. Under the background-only hypothesis, we show that current LHC searches do not robustly exclude any range of neutralino or chargino masses. However, a pattern of excesses in several LHC analyses points towards a possible signal, with neutralino masses of Open image in new window = (8–155, 103–260, 130–473, 219–502) GeV and chargino masses of Open image in new window = (104–259, 224–507) GeV at the 95% confidence level. The lightest neutralino is mostly bino, with a possible modest Higgsino or wino component. We find that this excess has a combined local significance of 3.3σ, subject to a number of cautions. If one includes LHC searches for charginos and neutralinos conducted with 8 TeV proton-proton collision data, the local significance is lowered to 2.9σ. We briefly consider the implications for dark matter, finding that the correct relic density can be obtained through the Higgs-funnel and Z-funnel mechanisms, even assuming that all other sparticles are decoupled. All samples, GAMBIT input files and best-fit models from this study are available on Zenodo.Peter Athron, Csaba Balázs, Andy Buckley, Jonathan M. Cornell, Matthias Danninger ... Abhishek Sharma ... et al. (GAMBIT Collaboration

    Path dependence in energy systems and economic development

    Get PDF
    Energy systems are subject to strong and long-lived path dependence, owing to technological, infrastructural, institutional and behavioural lock-ins. Yet, with the prospect of providing accessible cheap energy to stimulate economic development and reduce poverty, governments often invest in large engineering projects and subsidy policies. Here, I argue that while these may achieve their objectives, they risk locking their economies onto energy-intensive pathways. Thus, particularly when economies are industrializing, and their energy systems are being transformed and are not yet fully locked-in, policymakers should take care before directing their economies onto energy-intensive pathways that are likely to be detrimental to their long-run prosperity
    corecore