30,086 research outputs found

    Mode switching in the nearby Mira-like variable R Doradus

    Get PDF
    We discuss visual observations spanning nearly 70 years of the nearby semiregular variable R Doradus. Using wavelet analysis, we show that the star switches back and forth between two pulsation modes having periods of 332 days and about 175 days, the latter with much smaller amplitude. Comparison with model calculations suggests that the two modes are the first and third radial overtone, with the physical diameter of the star making fundamental mode pulsation unlikely. The mode changes occur on a timescale of about 1000 d, which is too rapid be related to a change in the overall thermal structure of the star and may instead be related to weak chaos. The Hipparcos distance to R Dor is 62.4 +/- 2.8 pc which, taken with its dominant 332-day period, places it exactly on the period-luminosity relation of Miras in the Large Magellanic Cloud. Our results imply first overtone pulsation for all Miras which fall on the P-L relation. We argue that semiregular variables with long periods may largely be a subset of Miras and should be included in studies of Mira behaviour. The semiregulars may contain the immediate evolutionary Mira progenitors, or stars may alternate between periods of semiregular and Mira behaviour.Comment: 12 pages, latex with figures, accepted by MNRA

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    Rocket ozone sounding network data

    Get PDF
    During the period December 1976 through February 1977, three regular monthly ozone profiles were measured at Wallops Flight Center, two special soundings were taken at Antigua, West Indies, and at the Churchill Research Range, monthly activities were initiated to establish stratospheric ozone climatology. This report presents the data results and flight profiles for the period covered

    Implicit Simulations using Messaging Protocols

    Full text link
    A novel algorithm for performing parallel, distributed computer simulations on the Internet using IP control messages is introduced. The algorithm employs carefully constructed ICMP packets which enable the required computations to be completed as part of the standard IP communication protocol. After providing a detailed description of the algorithm, experimental applications in the areas of stochastic neural networks and deterministic cellular automata are discussed. As an example of the algorithms potential power, a simulation of a deterministic cellular automaton involving 10^5 Internet connected devices was performed.Comment: 14 pages, 3 figure
    corecore