10 research outputs found

    Multistrange baryon elliptic flow in Au plus Au collisions at root(NN)-N-S=200 GeV

    Get PDF
    We report on the first measurement of elliptic flow nu(2)(p(T)) of multistrange baryons Xi(-)+Xi(+) and Omega(-)+Omega(+) in heavy-ion collisions. In minimum-bias Au+Au collisions at root s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The p(T) dependence of nu(2) of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider

    Directed flow in Au+Au collisions at SNN\sqrt{{^S}NN} =62.4 GeV

    Get PDF
    We present the directed flow (v1) measured in Au+Au collisions at ((S)NN)\sqrt((^S)NN)=62.4 GeV in the midpseudorapidity region |\eta|<1.3 and in the forward pseudorapidity region 2.5<|\eta|<4.0. The results are obtained using the three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the Relativistic Heavy Ion Collider, the standard method with the event plane reconstructed from spectator neutrons. Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle directed flow is in the direction opposite to that of fragmentation neutrons

    Superoxide dismutase-mentor of abiotic stress tolerance in crop plants

    No full text
    Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 •−, OH•, H2O2, or 1O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 •− by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stressmediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions
    corecore