2,886 research outputs found

    A Spherical Plasma Dynamo Experiment

    Full text link
    We propose a plasma experiment to be used to investigate fundamental properties of astrophysical dynamos. The highly conducting, fast-flowing plasma will allow experimenters to explore systems with magnetic Reynolds numbers an order of magnitude larger than those accessible with liquid-metal experiments. The plasma is confined using a ring-cusp strategy and subject to a toroidal differentially rotating outer boundary condition. As proof of principle, we present magnetohydrodynamic simulations of the proposed experiment. When a von K\'arm\'an-type boundary condition is specified, and the magnetic Reynolds number is large enough, dynamo action is observed. At different values of the magnetic Prandtl and Reynolds numbers the simulations demonstrate either laminar or turbulent dynamo action

    Excited nucleon electromagnetic form factors from broken spin-flavor symmetry

    Full text link
    A group theoretical derivation of a relation between the N --> Delta charge quadrupole transition and neutron charge form factors is presented.Comment: 4 pages, Proc. of the 12 th Int'l. Workshop on the Physics of Excited Nucleons, NSTAR 2009, Beijing, April 19-22, 200

    Stirring Unmagnetized Plasma

    Full text link
    A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multi-cusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge exchange collisions

    Measurements of the magnetic field induced by a turbulent flow of liquid metal

    Full text link
    Initial results from the Madison Dynamo Experiment provide details of the inductive response of a turbulent flow of liquid sodium to an applied magnetic field. The magnetic field structure is reconstructed from both internal and external measurements. A mean toroidal magnetic field is induced by the flow when an axial field is applied, thereby demonstrating the omega effect. Poloidal magnetic flux is expelled from the fluid by the poloidal flow. Small-scale magnetic field structures are generated by turbulence in the flow. The resulting magnetic power spectrum exhibits a power-law scaling consistent with the equipartition of the magnetic field with a turbulent velocity field. The magnetic power spectrum has an apparent knee at the resistive dissipation scale. Large-scale eddies in the flow cause significant changes to the instantaneous flow profile resulting in intermittent bursts of non-axisymmetric magnetic fields, demonstrating that the transition to a dynamo is not smooth for a turbulent flow.Comment: 9 pages, 11 figures, invited talk by C. B. Forest at 2005 APS DPP meeting, resubmitted to Physics of Plasma

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty

    Observation of a Turbulence-Induced Large Scale Magnetic Field

    Full text link
    An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega-effect). Its potential role in the production of the induced dipole is discussed.Comment: 5 pages, 4 figures Revisions to accomodate peer-reviewer concerns; changes to main text including simplification of a proof, Fig. 2 updated, and minor typos and clarifications; Added refrences. Resubmitted to Phys. Rev. Let

    Intermittent magnetic field excitation by a turbulent flow of liquid sodium

    Get PDF
    The magnetic field measured in the Madison Dynamo Experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.Comment: 5 pages, 7 figure
    • …
    corecore