12,998 research outputs found

    Raster graphics extensions to the core system

    Get PDF
    A conceptual model of raster graphics systems was developed. The model integrates core-like graphics package concepts with contemporary raster display architectures. The conceptual model of raster graphics introduces multiple pixel matrices with associated index tables

    Discovery and Cosmological Implications of SPT-CL J2106-5844, the Most Massive Known Cluster at z>1

    Get PDF
    Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z>1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev-Zel'dovich (SZ) effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. Very Large Telescope and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132^(+0.002)_(–0.003). Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 ± 0.03. These redshifts are consistent with the galaxy colors found in optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster having a core-excluded temperature of T_X = 11.0^(+2.6)_(–1.9) keV and a luminosity (within r _(500)) of LX (0.5-2.0 keV) = (13.9 ± 1.0) × 10_(44) erg s^(–1). The combined mass estimate from measurements of the SZ effect and X-ray data is M_(200) = (1.27 ± 0.21) × 10^(15) h ^(–1) _(70) M_⊙. The discovery of such a massive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of ΛCDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg^2 SPT survey region and that only one such galaxy cluster is expected in the entire sky

    SSME structural dynamic model development

    Get PDF
    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance

    The excited hadron spectrum in lattice QCD using a new method of estimating quark propagation

    Full text link
    Progress in determining the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of carefully-designed hadron operators have been studied and their effectiveness in facilitating the extraction of excited-state energies is demonstrated. A new method of stochastically estimating the low-lying effects of quark propagation is proposed which will allow reliable determinations of temporal correlations of single-hadron and multi-hadron operators.Comment: 5 pages, 4 figures, talk given at Hadron 2009, Tallahassee, Florida, December 1, 200

    The complex channel networks of bone structure

    Full text link
    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussedComment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org

    Optical-inertia space sextant for an advanced space navigation system, phase B

    Get PDF
    Optical-inertia space sextant for advanced space navigation syste
    corecore