12,998 research outputs found
Raster graphics extensions to the core system
A conceptual model of raster graphics systems was developed. The model integrates core-like graphics package concepts with contemporary raster display architectures. The conceptual model of raster graphics introduces multiple pixel matrices with associated index tables
Discovery and Cosmological Implications of SPT-CL J2106-5844, the Most Massive Known Cluster at z>1
Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z>1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev-Zel'dovich (SZ) effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. Very Large Telescope and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132^(+0.002)_(–0.003). Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 ± 0.03. These redshifts are consistent with the galaxy colors found in optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster having a core-excluded temperature of T_X = 11.0^(+2.6)_(–1.9) keV and a luminosity (within r _(500)) of LX (0.5-2.0 keV) = (13.9 ± 1.0) × 10_(44) erg s^(–1). The combined mass estimate from measurements of the SZ effect and X-ray data is M_(200) = (1.27 ± 0.21) × 10^(15) h ^(–1) _(70) M_⊙. The discovery of such a massive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of ΛCDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg^2 SPT survey region and that only one such galaxy cluster is expected in the entire sky
SSME structural dynamic model development
A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed
Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown
impressive power conversion efficiencies of above 20%. However, the microscopic
mechanism of the high photovoltaic performance is yet to be fully understood.
Particularly, the dynamics of CH3NH3+ cations and their impact on relevant
processes such as charge recombination and exciton dissociation are still
poorly understood. Here, using elastic and quasi-elastic neutron scattering
techniques and group theoretical analysis, we studied rotational modes of the
CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K)
and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold
rotational symmetry of the C-N axis (C4) along with three-fold rotation around
the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is
present. Around room temperature, the characteristic relaxation times for the
C4 rotation is found to be ps while for the C3 rotation ps. The -dependent
rotational relaxation times were fitted with Arrhenius equations to obtain
activation energies. Our data show a close correlation between the C4
rotational mode and the temperature dependent dielectric permittivity. Our
findings on the rotational dynamics of CH3NH3+ and the associated dipole have
important implications on understanding the low exciton binding energy and slow
charge recombination rate in CH3NH3PbI3 which are directly relevant for the
high solar cell performance
Recommended from our members
Dust devils on Mars: Effects of surface roughness on particle threshold
Abstract not available
The excited hadron spectrum in lattice QCD using a new method of estimating quark propagation
Progress in determining the spectrum of excited baryons and mesons in lattice
QCD is described. Large sets of carefully-designed hadron operators have been
studied and their effectiveness in facilitating the extraction of excited-state
energies is demonstrated. A new method of stochastically estimating the
low-lying effects of quark propagation is proposed which will allow reliable
determinations of temporal correlations of single-hadron and multi-hadron
operators.Comment: 5 pages, 4 figures, talk given at Hadron 2009, Tallahassee, Florida,
December 1, 200
The complex channel networks of bone structure
Bone structure in mammals involves a complex network of channels (Havers and
Volkmann channels) required to nourish the bone marrow cells. This work
describes how three-dimensional reconstructions of such systems can be obtained
and represented in terms of complex networks. Three important findings are
reported: (i) the fact that the channel branching density resembles a power law
implies the existence of distribution hubs; (ii) the conditional node degree
density indicates a clear tendency of connection between nodes with degrees 2
and 4; and (iii) the application of the recently introduced concept of
hierarchical clustering coefficient allows the identification of typical scales
of channel redistribution. A series of important biological insights is drawn
and discussedComment: 3 pages, 1 figure, The following article has been submitted to
Applied Physics Letters. If it is published, it will be found online at
http://apl.aip.org
Optical-inertia space sextant for an advanced space navigation system, phase B
Optical-inertia space sextant for advanced space navigation syste
- …
