6 research outputs found

    Patient-derived acute myeloid leukemia (AML) bone marrow cells display distinct intracellular kinase phosphorylation patterns

    Get PDF
    Multiparametric analyses of phospho-protein activation in patients with acute myeloid leukemia (AML) offers a quantitative measure to monitor the activity of novel intracellular kinase (IK) inhibitors. As recent clinical investigation with FMS-like tyrosine-3 inhibitors demonstrated, targeting IK with selective inhibitors can have a modest clinical benefit. Because multiple IKs are active in patients with AML, multikinase inhibitors may provide the necessary inhibition profile to achieve a more sustained clinical benefit. We here describe a method of assessing the activation of several IKs by flow cytometry. In 40 different samples of patients with AML we observed hyper-activated phospho-proteins at baseline, which is modestly increased by adding stem cell factor to AML cells. Finally, AML cells had a significantly different phospho-protein profile compared with cells of the lymphocyte gate. In conclusion, our method offers a way to determine the activation status of multiple kinases in AML and hence is a reliable assay to evaluate the pharmacodynamic activity of novel multikinase inhibitors

    Innovative Analyses Support a Role for DNA Damage and an Aberrant Cell Cycle in Myelodysplastic Syndrome Pathogenesis

    Get PDF
    We used flow cytometry to analyze the cell cycle, DNA damage, and apoptosis in hematopoietic subsets in MDS marrow. Subsets were assigned using CD45, side scatter, CD34, and CD71. Cell cycle fractions were analyzed using DRAQ 5 (DNA content) and MPM-2 (mitoses). DNA damage was assessed using p-H2A.X, and apoptosis using Annexin V. Compared to controls, MDS patients demonstrated no increased mitoses in erythroid, myeloid, or CD34+ cells. Myeloid progenitors demonstrated increased G2 cells, which with no increased mitoses suggested delayed passage through G2. Myeloid progenitors demonstrated increased p-H2A.X, consistent with DNA damage causing this delay. Annexin V reactivity was equivalent in MDS and controls. Results for each parameter varied among hematopoietic compartments, demonstrating the need to analyze compartments separately. Our results suggest that peripheral cytopenias in MDS are due to delayed cell cycle passage of marrow progenitors and that this delayed passage and leukemic progression derive from excessive DNA damage
    corecore