82 research outputs found
The Near Infrared NaI Doublet Feature in M Stars
The NaI near-infrared doublet has been used to indicate the dwarf/giant
population in composite systems, but its interpretation is still a contentious
issue. In order to understand the behaviour of this controversial feature, we
study the observed and synthetic spectra of cool stars. We conclude that the
NaI infrared feature can be used as a dwarf/giant discriminator. We propose a
modified definition of the NaI index by locating the red continuum at 8234
angstrons and by measuring the equivalent width in the range 8172-8197
angstrons, avoiding the region at lambda > 8197 angstrons, which contains VI,
ZrI, FeI and TiO lines. We also study the dependence of this feature on stellar
atmospheric parameters.Comment: 9 pages, (TeX file) + 7 Figures in Postscript format. Accepted for
publication in The Astrophysical Journa
The fluorine abundance in a Galactic Bulge AGB star measured from CRIRES spectra
We present measurements of the fluorine abundance in a Galactic Bulge
Asymptotic Giant Branch (AGB) star. The measurements were performed using high
resolution K-band spectra obtained with the CRIRES spectrograph, which has been
recently installed at ESO's VLT, together with state-of-the-art model
atmospheres and synthetic spectra. This represents the first fluorine abundance
measurement in a Galactic Bulge star, and one of few measurements of this kind
in a third dredge-up oxygen-rich AGB star. The F abundance is found to be close
to the solar value scaled down to the metallicity of the star, and in agreement
with Disk giants that are comparable to the Bulge giant studied here. The
measurement is of astrophysical interest also because the star's mass can be
estimated rather accurately (1.4 \lesssim M/\mathrm{M}_{\sun} \lesssim 2.0).
AGB nucleosynthesis models predict only a very mild enrichment of F in such low
mass AGB stars. Thus, we suggest that the fluorine abundance found in the
studied star is representative for the star's natal cloud, and that fluorine
must have been produced at a similar level in the Bulge and in the Disk.Comment: 11 pages, 1 figure, accepted for publication by Ap
Theoretical Modeling of Starburst Galaxies
We have modeled a large sample of infrared starburst galaxies using both the
PEGASE v2.0 and STARBURST99 codes to generate the spectral energy distribution
of the young star clusters. PEGASE utilizes the Padova group tracks while
STARBURST99 uses the Geneva group tracks, allowing comparison between the two.
We used our MAPPINGS III code to compute photoionization models which include a
self-consistent treatment of dust physics and chemical depletion. We use the
standard optical diagnostic diagrams as indicators of the hardness of the EUV
radiation field in these galaxies. These diagnostic diagrams are most sensitive
to the spectral index of the ionizing radiation field in the 1-4 Rydberg
region. We find that warm infrared starburst galaxies contain a relatively hard
EUV field in this region. The PEGASE ionizing stellar continuum is harder in
the 1-4 Rydberg range than that of STARBURST99. As the spectrum in this regime
is dominated by emission from Wolf-Rayet (W-R) stars, this difference is most
likely due to the differences in stellar atmosphere models used for the W-R
stars. We believe that the stellar atmospheres in STARBURST99 are more
applicable to the starburst galaxies in our sample, however they do not produce
the hard EUV field in the 1-4 Rydberg region required by our observations. The
inclusion of continuum metal blanketing in the models may be one solution.
Supernova remnant (SNR) shock modeling shows that the contribution by
mechanical energy from SNRs to the photoionization models is << 20%. The models
presented here are used to derive a new theoretical classification scheme for
starbursts and AGN galaxies based on the optical diagnostic diagrams.Comment: 36 pages, 16 figures, to be published in ApJ, July 20, 200
Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds
The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in
the Magellanic Clouds are presented. These abundances have been derived using
mainly infrared data from the Spitzer Space Telescope. The implications for the
chemical evolution of these elements are discussed. A comparison with similarly
obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII
regions is also given. The average neon abundances are 6.0x10(-5) and
2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively.
These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae
to which we compare. The average sulfur abundances for the LMC and SMC are
respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average
higher than the ratio found in Galactic PNe (16) but the range of values in
both data sets is similar for most of the objects. The neon abundances found in
PNe and HII regions agree with each other. It is possible that a few (3-4) of
the PNe in the sample have experienced some neon enrichment, but for two of
these objects the high Ne/S ratio can be explained by their very low sulfur
abundances. The neon and sulfur abundances derived in this paper are also
compared to previously published abundances using optical data and
photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap
IAC-Star: a Code for Synthetic Color-Magnitude Diagram Computation
The code IAC-star is presented. It generates synthetic HR and color-magnitude
diagrams (CMDs) and is mainly aimed to star formation history studies in nearby
galaxies. Composite stellar populations are calculated on a star by star basis,
by computing the luminosity, effective temperature and gravity of each star by
direct bi-logarithmic interpolation in the metallicity and age grid of a
library of stellar evolution tracks. Visual (broad band and HST) and infrared
magnitudes are also provided for each star after applying bolometric
corrections. The Padua (Bertelli et al. 1994, Girardi et al. 2000) and Teramo
(Pietrinferni et al. 2004) stellar evolution libraries and various bolometric
corrections libraries are used in the current version. A variety of star
formation rate functions, initial mass functions and chemical enrichment laws
are allowed and binary stars can be computed. Although the main motivation of
the code is the computation of synthetic CMDs, it also provides integrated
masses, luminosities and magnitudes as well as surface brightness fluctuation
luminosities and magnitudes for the total synthetic stellar population, and
therefore it can also be used for population synthesis research. The code is
offered for free use and can be executed at the site {\tt
http://iac-star.iac.es}, with the only requirement of referencing this paper
and crediting as indicated in the site.Comment: Astronomical Journal, in pres
The Temperature Scale of Metal-Rich M Giants Based on TiO Bands: Population Synthesis in the Near Infrared
We have computed a grid of high resolution synthetic spectra for cool stars
(2500<Teff<6000 K) in the wavelength range 6000 -- 10200A, by employing an
updated line list of atomic and molecular lines, together with state-of-the-art
model atmospheres.
As a by-product, by fitting TiO bandheads in spectra of well-known M giants,
we have derived the electronic oscillator strengths of the TiO gamma prime,
delta, epsilon and phi systems. The derived oscillator strenghts for the gamma
prime, epsilon and phi systems differ from the laboratory and ab initio values
found in the literature, but are consistent with the model atmospheres and line
lists employed, resulting in a good match to the observed spectra of M giants
of known parameters.
The behavior of TiO bands as a function of the stellar parameters Teff, log g
and [Fe/H] is presented and the use of TiO spectral indices in stellar
population studies is discussed.Comment: ApJ accepted, 27 pages + 11 figures, AASLatex v4.
X-ray Observations and Infrared Identification of the Transient 7.8 s X-ray Binary Pulsar XTE J1829-098
XMM-Newton and Chandra observations of the transient 7.8 s pulsar XTE
J1829-098 are used to characterize its pulse shape and spectrum, and to
facilitate a search for an optical or infrared counterpart. In outburst, the
absorbed, hard X-ray spectrum with Gamma = 0.76+/-0.13 and N_H = (6.0+/-0.6) x
10^{22} cm^{-2} is typical of X-ray binary pulsars. The precise Chandra
localization in a faint state leads to the identification of a probable
infrared counterpart at R.A. = 18h29m43.98s, decl. = -09o51'23.0" (J2000.0)
with magnitudes K=12.7, H=13.9, I>21.9, and R>23.2. If this is a highly
reddened O or B star, we estimate a distance of 10 kpc, at which the maximum
observed X-ray luminosity is 2x10^{36} ergs s^{-1}, typical of Be X-ray
transients or wind-fed systems. The minimum observed luminosity is
3x10^{32}(d/10 kpc)^2 ergs s^{-1}. We cannot rule out the possibility that the
companion is a red giant. The two known X-ray outbursts of XTE J1829-098 are
separated by ~1.3 yr, which may be the orbital period or a multiple of it, with
the neutron star in an eccentric orbit. We also studied a late M-giant
long-period variable that we found only 9" from the X-ray position. It has a
pulsation period of ~1.5 yr, but is not the companion of the X-ray source.Comment: 6 pages, 7 figures. To appear in The Astrophysical Journa
Discovery of an M8.5 Dwarf With Proper Motion mu=2.38 arcsec/yr
We report the discovery of LSR1826+3014, a very faint (V=19.36) star with a
very large proper motion (mu=2.38 arcsec/yr). A low resolution red spectrum
reveals that LSR1826+3014 is an ultra-cool red dwarf with spectral type M8.5 V
and with a radial velocity v_rad=+77+/-10 km/s. LSR1826+3014 is thus the
faintest red dwarf ever discovered with a proper motion larger than 2
arcsec/yr. Optical and infrared photometry suggest that the star is at a
distance d=13.9+/-3.5 pc from the Sun, which implies it is moving relative to
the local standard of rest with a total velocity of 175+/-25 km/s. Numerical
integration of its orbit suggests that LSR1826+3014 is on a halo-like galactic
orbit.Comment: 12 pages, including 1 table and 3 figures, accepted for publication
in The Astrophysical Journal Letter
Synthetic Spectra and Color-Temperature Relations of M Giants
As part of a project to model the integrated spectra and colors of elliptical
galaxies through evolutionary synthesis, we have refined our synthetic spectrum
calculations of M giants. After critically assessing three effective
temperature scales for M giants, we adopted the relation of Dyck et al. (1996)
for our models. Using empirical spectra of field M giants as a guide, we then
calculated MARCS stellar atmosphere models and SSG synthetic spectra of these
cool stars, adjusting the band absorption oscillator strengths of the TiO bands
to better reproduce the observational data. The resulting synthetic spectra are
found to be in very good agreement with the K-band spectra of stars of the
appropriate spectral type taken from Kleinmann & Hall (1986) as well. Spectral
types estimated from the strengths of the TiO bands and the depth of the
bandhead of CO near 2.3 microns quantitatively confirm that the synthetic
spectra are good representations of those of field M giants. The broad-band
colors of the models match the field relations of K and early-M giants very
well; for late-M giants, differences between the field-star and synthetic
colors are probably caused by the omission of spectral lines of VO and water in
the spectrum synthesis calculations. Here, we present four grids of K-band
bolometric corrections and colors -- Johnson U-V and B-V; Cousins V-R and V-I;
Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO -- for models
having 3000 K < Teff < 4000 K and -0.5 < log g < 1.5. These grids, which have
[Fe/H] = +0.25, 0.0, -0.5 and -1.0, extend and supplement the color-temperature
relations of hotter stars presented in a companion paper (astro-ph/9911367).Comment: To appear in the March 2000 issue of the Astronomical Journal. 60
pages including 15 embedded postscript figures (one page each) and 6 embedded
postscript tables (10 pages total
Formation of a disk-structure and jets in the symbiotic prototype Z And during its 2006-2010 active phase
We present an analysis of spectrophotometric observations of the latest cycle
of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the
temperature of the hot component of Z And to be \approx 150000 - 170000 K at
minimum brightness, decreasing to \approx 90000 K at the brightness maximum.
Our estimate of the electron density in the gaseous nebula is
N_{e}=10^{10}-10^{12} cm^{-3} in the region of formation of lines of neutral
helium and 10^6-10^7 cm^{-3} in the region of formation of the [OIII] and
[NeIII] nebular lines. A trend for the gas density derived from helium lines to
increase and the gas density derived from [OIII] and [NeIII] lines to
simultaneously decrease with increasing brightness of the system was observed.
Our estimates show that the ratios of the theoretical and observed fluxes in
the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its
value for planetary nebulae. The model spectral energy distribution showed
that, in addition to a cool component and gaseous nebula, a relatively cool
pseudophotosphere (5250-11 500 K) is present in the system. The simultaneous
presence of a relatively cool pseudophotosphere and high-ionization spectral
lines is probably related to a disk-like structure of the pseudophotosphere.
The pseudophotosphere formed very rapidly, over several weeks, during a period
of increasing brightness of Z And. We infer that in 2009, as in 2006, the
activity of the system was accompanied by a collimated bipolar ejection of
matter. In contrast to the situation in 2006, the jets were detected even
before the system reached its maximum brightness. Moreover, components with
velocities close to 1200 km/s disappeared at the maximum, while those with
velocities close to 1800 km/s appeared.Comment: 18 pages, 19 figures, Accepted for publication in Astronomy Report
- …