82 research outputs found

    The Near Infrared NaI Doublet Feature in M Stars

    Get PDF
    The NaI near-infrared doublet has been used to indicate the dwarf/giant population in composite systems, but its interpretation is still a contentious issue. In order to understand the behaviour of this controversial feature, we study the observed and synthetic spectra of cool stars. We conclude that the NaI infrared feature can be used as a dwarf/giant discriminator. We propose a modified definition of the NaI index by locating the red continuum at 8234 angstrons and by measuring the equivalent width in the range 8172-8197 angstrons, avoiding the region at lambda > 8197 angstrons, which contains VI, ZrI, FeI and TiO lines. We also study the dependence of this feature on stellar atmospheric parameters.Comment: 9 pages, (TeX file) + 7 Figures in Postscript format. Accepted for publication in The Astrophysical Journa

    The fluorine abundance in a Galactic Bulge AGB star measured from CRIRES spectra

    Full text link
    We present measurements of the fluorine abundance in a Galactic Bulge Asymptotic Giant Branch (AGB) star. The measurements were performed using high resolution K-band spectra obtained with the CRIRES spectrograph, which has been recently installed at ESO's VLT, together with state-of-the-art model atmospheres and synthetic spectra. This represents the first fluorine abundance measurement in a Galactic Bulge star, and one of few measurements of this kind in a third dredge-up oxygen-rich AGB star. The F abundance is found to be close to the solar value scaled down to the metallicity of the star, and in agreement with Disk giants that are comparable to the Bulge giant studied here. The measurement is of astrophysical interest also because the star's mass can be estimated rather accurately (1.4 \lesssim M/\mathrm{M}_{\sun} \lesssim 2.0). AGB nucleosynthesis models predict only a very mild enrichment of F in such low mass AGB stars. Thus, we suggest that the fluorine abundance found in the studied star is representative for the star's natal cloud, and that fluorine must have been produced at a similar level in the Bulge and in the Disk.Comment: 11 pages, 1 figure, accepted for publication by Ap

    Theoretical Modeling of Starburst Galaxies

    Get PDF
    We have modeled a large sample of infrared starburst galaxies using both the PEGASE v2.0 and STARBURST99 codes to generate the spectral energy distribution of the young star clusters. PEGASE utilizes the Padova group tracks while STARBURST99 uses the Geneva group tracks, allowing comparison between the two. We used our MAPPINGS III code to compute photoionization models which include a self-consistent treatment of dust physics and chemical depletion. We use the standard optical diagnostic diagrams as indicators of the hardness of the EUV radiation field in these galaxies. These diagnostic diagrams are most sensitive to the spectral index of the ionizing radiation field in the 1-4 Rydberg region. We find that warm infrared starburst galaxies contain a relatively hard EUV field in this region. The PEGASE ionizing stellar continuum is harder in the 1-4 Rydberg range than that of STARBURST99. As the spectrum in this regime is dominated by emission from Wolf-Rayet (W-R) stars, this difference is most likely due to the differences in stellar atmosphere models used for the W-R stars. We believe that the stellar atmospheres in STARBURST99 are more applicable to the starburst galaxies in our sample, however they do not produce the hard EUV field in the 1-4 Rydberg region required by our observations. The inclusion of continuum metal blanketing in the models may be one solution. Supernova remnant (SNR) shock modeling shows that the contribution by mechanical energy from SNRs to the photoionization models is << 20%. The models presented here are used to derive a new theoretical classification scheme for starbursts and AGN galaxies based on the optical diagnostic diagrams.Comment: 36 pages, 16 figures, to be published in ApJ, July 20, 200

    Neon and Sulfur Abundances of Planetary Nebulae in the Magellanic Clouds

    Get PDF
    The chemical abundances of neon and sulfur for 25 planetary nebulae (PNe) in the Magellanic Clouds are presented. These abundances have been derived using mainly infrared data from the Spitzer Space Telescope. The implications for the chemical evolution of these elements are discussed. A comparison with similarly obtained abundances of Galactic PNe and HII regions and Magellanic Clouds HII regions is also given. The average neon abundances are 6.0x10(-5) and 2.7x10(-5) for the PNe in the Large and Small Magellanic Clouds respectively. These are ~1/3 and 1/6 of the average abundances of Galactic planetary nebulae to which we compare. The average sulfur abundances for the LMC and SMC are respectively 2.7x10(-6) and 1.0x10(-6). The Ne/S ratio (23.5) is on average higher than the ratio found in Galactic PNe (16) but the range of values in both data sets is similar for most of the objects. The neon abundances found in PNe and HII regions agree with each other. It is possible that a few (3-4) of the PNe in the sample have experienced some neon enrichment, but for two of these objects the high Ne/S ratio can be explained by their very low sulfur abundances. The neon and sulfur abundances derived in this paper are also compared to previously published abundances using optical data and photo-ionization models.Comment: 13 pages, 4 tables, 5 figures. Accepted for publication in Ap

    IAC-Star: a Code for Synthetic Color-Magnitude Diagram Computation

    Full text link
    The code IAC-star is presented. It generates synthetic HR and color-magnitude diagrams (CMDs) and is mainly aimed to star formation history studies in nearby galaxies. Composite stellar populations are calculated on a star by star basis, by computing the luminosity, effective temperature and gravity of each star by direct bi-logarithmic interpolation in the metallicity and age grid of a library of stellar evolution tracks. Visual (broad band and HST) and infrared magnitudes are also provided for each star after applying bolometric corrections. The Padua (Bertelli et al. 1994, Girardi et al. 2000) and Teramo (Pietrinferni et al. 2004) stellar evolution libraries and various bolometric corrections libraries are used in the current version. A variety of star formation rate functions, initial mass functions and chemical enrichment laws are allowed and binary stars can be computed. Although the main motivation of the code is the computation of synthetic CMDs, it also provides integrated masses, luminosities and magnitudes as well as surface brightness fluctuation luminosities and magnitudes for the total synthetic stellar population, and therefore it can also be used for population synthesis research. The code is offered for free use and can be executed at the site {\tt http://iac-star.iac.es}, with the only requirement of referencing this paper and crediting as indicated in the site.Comment: Astronomical Journal, in pres

    The Temperature Scale of Metal-Rich M Giants Based on TiO Bands: Population Synthesis in the Near Infrared

    Get PDF
    We have computed a grid of high resolution synthetic spectra for cool stars (2500<Teff<6000 K) in the wavelength range 6000 -- 10200A, by employing an updated line list of atomic and molecular lines, together with state-of-the-art model atmospheres. As a by-product, by fitting TiO bandheads in spectra of well-known M giants, we have derived the electronic oscillator strengths of the TiO gamma prime, delta, epsilon and phi systems. The derived oscillator strenghts for the gamma prime, epsilon and phi systems differ from the laboratory and ab initio values found in the literature, but are consistent with the model atmospheres and line lists employed, resulting in a good match to the observed spectra of M giants of known parameters. The behavior of TiO bands as a function of the stellar parameters Teff, log g and [Fe/H] is presented and the use of TiO spectral indices in stellar population studies is discussed.Comment: ApJ accepted, 27 pages + 11 figures, AASLatex v4.

    X-ray Observations and Infrared Identification of the Transient 7.8 s X-ray Binary Pulsar XTE J1829-098

    Full text link
    XMM-Newton and Chandra observations of the transient 7.8 s pulsar XTE J1829-098 are used to characterize its pulse shape and spectrum, and to facilitate a search for an optical or infrared counterpart. In outburst, the absorbed, hard X-ray spectrum with Gamma = 0.76+/-0.13 and N_H = (6.0+/-0.6) x 10^{22} cm^{-2} is typical of X-ray binary pulsars. The precise Chandra localization in a faint state leads to the identification of a probable infrared counterpart at R.A. = 18h29m43.98s, decl. = -09o51'23.0" (J2000.0) with magnitudes K=12.7, H=13.9, I>21.9, and R>23.2. If this is a highly reddened O or B star, we estimate a distance of 10 kpc, at which the maximum observed X-ray luminosity is 2x10^{36} ergs s^{-1}, typical of Be X-ray transients or wind-fed systems. The minimum observed luminosity is 3x10^{32}(d/10 kpc)^2 ergs s^{-1}. We cannot rule out the possibility that the companion is a red giant. The two known X-ray outbursts of XTE J1829-098 are separated by ~1.3 yr, which may be the orbital period or a multiple of it, with the neutron star in an eccentric orbit. We also studied a late M-giant long-period variable that we found only 9" from the X-ray position. It has a pulsation period of ~1.5 yr, but is not the companion of the X-ray source.Comment: 6 pages, 7 figures. To appear in The Astrophysical Journa

    Discovery of an M8.5 Dwarf With Proper Motion mu=2.38 arcsec/yr

    Full text link
    We report the discovery of LSR1826+3014, a very faint (V=19.36) star with a very large proper motion (mu=2.38 arcsec/yr). A low resolution red spectrum reveals that LSR1826+3014 is an ultra-cool red dwarf with spectral type M8.5 V and with a radial velocity v_rad=+77+/-10 km/s. LSR1826+3014 is thus the faintest red dwarf ever discovered with a proper motion larger than 2 arcsec/yr. Optical and infrared photometry suggest that the star is at a distance d=13.9+/-3.5 pc from the Sun, which implies it is moving relative to the local standard of rest with a total velocity of 175+/-25 km/s. Numerical integration of its orbit suggests that LSR1826+3014 is on a halo-like galactic orbit.Comment: 12 pages, including 1 table and 3 figures, accepted for publication in The Astrophysical Journal Letter

    Synthetic Spectra and Color-Temperature Relations of M Giants

    Full text link
    As part of a project to model the integrated spectra and colors of elliptical galaxies through evolutionary synthesis, we have refined our synthetic spectrum calculations of M giants. After critically assessing three effective temperature scales for M giants, we adopted the relation of Dyck et al. (1996) for our models. Using empirical spectra of field M giants as a guide, we then calculated MARCS stellar atmosphere models and SSG synthetic spectra of these cool stars, adjusting the band absorption oscillator strengths of the TiO bands to better reproduce the observational data. The resulting synthetic spectra are found to be in very good agreement with the K-band spectra of stars of the appropriate spectral type taken from Kleinmann & Hall (1986) as well. Spectral types estimated from the strengths of the TiO bands and the depth of the bandhead of CO near 2.3 microns quantitatively confirm that the synthetic spectra are good representations of those of field M giants. The broad-band colors of the models match the field relations of K and early-M giants very well; for late-M giants, differences between the field-star and synthetic colors are probably caused by the omission of spectral lines of VO and water in the spectrum synthesis calculations. Here, we present four grids of K-band bolometric corrections and colors -- Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO -- for models having 3000 K < Teff < 4000 K and -0.5 < log g < 1.5. These grids, which have [Fe/H] = +0.25, 0.0, -0.5 and -1.0, extend and supplement the color-temperature relations of hotter stars presented in a companion paper (astro-ph/9911367).Comment: To appear in the March 2000 issue of the Astronomical Journal. 60 pages including 15 embedded postscript figures (one page each) and 6 embedded postscript tables (10 pages total

    Formation of a disk-structure and jets in the symbiotic prototype Z And during its 2006-2010 active phase

    Full text link
    We present an analysis of spectrophotometric observations of the latest cycle of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the temperature of the hot component of Z And to be \approx 150000 - 170000 K at minimum brightness, decreasing to \approx 90000 K at the brightness maximum. Our estimate of the electron density in the gaseous nebula is N_{e}=10^{10}-10^{12} cm^{-3} in the region of formation of lines of neutral helium and 10^6-10^7 cm^{-3} in the region of formation of the [OIII] and [NeIII] nebular lines. A trend for the gas density derived from helium lines to increase and the gas density derived from [OIII] and [NeIII] lines to simultaneously decrease with increasing brightness of the system was observed. Our estimates show that the ratios of the theoretical and observed fluxes in the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its value for planetary nebulae. The model spectral energy distribution showed that, in addition to a cool component and gaseous nebula, a relatively cool pseudophotosphere (5250-11 500 K) is present in the system. The simultaneous presence of a relatively cool pseudophotosphere and high-ionization spectral lines is probably related to a disk-like structure of the pseudophotosphere. The pseudophotosphere formed very rapidly, over several weeks, during a period of increasing brightness of Z And. We infer that in 2009, as in 2006, the activity of the system was accompanied by a collimated bipolar ejection of matter. In contrast to the situation in 2006, the jets were detected even before the system reached its maximum brightness. Moreover, components with velocities close to 1200 km/s disappeared at the maximum, while those with velocities close to 1800 km/s appeared.Comment: 18 pages, 19 figures, Accepted for publication in Astronomy Report
    corecore