2,364 research outputs found

    A roadmap to achieve pharmacological precision medicine in diabetes

    Get PDF
    Current pharmacological treatment of diabetes is largely algorithmic. Other than for cardiovascular disease or renal disease, where sodium–glucose cotransporter 2 inhibitors and/or glucagon-like peptide-1 receptor agonists are indicated, the choice of treatment is based upon overall risks of harm or side effect and cost, and not on probable benefit. Here we argue that a more precise approach to treatment choice is necessary to maximise benefit and minimise harm from existing diabetes therapies. We propose a roadmap to achieve precision medicine as standard of care, to discuss current progress in relation to monogenic diabetes and type 2 diabetes, and to determine what additional work is required. The first step is to identify robust and reliable genetic predictors of response, recognising that genotype is static over time and provides the skeleton upon which modifiers such as clinical phenotype and metabolic biomarkers can be overlaid. The second step is to identify these metabolic biomarkers (e.g. beta cell function, insulin sensitivity, BMI, liver fat, metabolite profile), which capture the metabolic state at the point of prescribing and may have a large impact on drug response. Third, we need to show that predictions that utilise these genetic and metabolic biomarkers improve therapeutic outcomes for patients, and fourth, that this is cost-effective. Finally, these biomarkers and prediction models need to be embedded in clinical care systems to enable effective and equitable clinical implementation. Whilst this roadmap is largely complete for monogenic diabetes, we still have considerable work to do to implement this for type 2 diabetes. Increasing collaborations, including with industry, and access to clinical trial data should enable progress to implementation of precision treatment in type 2 diabetes in the near future. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains a slideset of the figures for download, which is available at 10.1007/s00125-022-05732-3

    Genome-Wide Association with Diabetes-Related Traits in the Framingham Heart Study

    Get PDF
    BACKGROUND: Susceptibility to type 2 diabetes may be conferred by genetic variants having modest effects on risk. Genome-wide fixed marker arrays offer a novel approach to detect these variants. METHODS: We used the Affymetrix 100K SNP array in 1,087 Framingham Offspring Study family members to examine genetic associations with three diabetes-related quantitative glucose traits (fasting plasma glucose (FPG), hemoglobin A1c, 28-yr time-averaged FPG (tFPG)), three insulin traits (fasting insulin, HOMA-insulin resistance, and 0–120 min insulin sensitivity index); and with risk for diabetes. We used additive generalized estimating equations (GEE) and family-based association test (FBAT) models to test associations of SNP genotypes with sex-age-age2-adjusted residual trait values, and Cox survival models to test incident diabetes. RESULTS: We found 415 SNPs associated (at p 1%) 100K SNPs in LD (r2 > 0.05) with ABCC8 A1369S (rs757110), KCNJ11 E23K (rs5219), or SNPs in CAPN10 or HNFa. PPARG P12A (rs1801282) was not significantly associated with diabetes or related traits. CONCLUSION: Framingham 100K SNP data is a resource for association tests of known and novel genes with diabetes and related traits posted at. Framingham 100K data replicate the TCF7L2 association with diabetes.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1); National Center for Research Resources General Clinical Research Center (M01-RR-01066); American Diabetes Association Career Developement Award; GlaxoSmithKline; Merck; Lilly; National Institutes of Health Research Career Award (K23 DK659678-03

    A Polygenic Score for Type 2 Diabetes Risk is Associated with Both the Acute and Sustained Response to Sulfonylureas

    Get PDF
    There is a limited understanding of how genetic loci associated with glycemic traits and type 2 diabetes (T2D) influence the response to antidiabetic medications. Polygenic scores provide increasing power to detect patterns of disease predisposition that might benefit from a targeted pharmacologic intervention. In the Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH), we constructed weighted polygenic scores using known genome-wide significant associations for T2D, fasting glucose, and fasting insulin, comprising 65, 43, and 13 single nucleotide polymorphisms, respectively. Multiple linear regression tested for associations between scores and glycemic traits as well as pharmacodynamic end points, adjusting for age, sex, race, and BMI. A higher T2D score was nominally associated with a shorter time to insulin peak, greater glucose area over the curve, shorter time to glucose trough, and steeper slope to glucose trough after glipizide. In replication, a higher T2D score was associated with a greater 1-year hemoglobin A(1c) reduction to sulfonylureas in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study (P = 0.02). Our findings suggest that individuals with a higher genetic burden for T2D experience a greater acute and sustained response to sulfonylureas

    Genetic Predisposition to Long-Term Nondiabetic Deteriorations in Glucose Homeostasis: Ten-Year Follow-Up of the GLACIER Study

    Get PDF
    Objective: To assess whether recently discovered genetic loci associated with hyperglycemia also predict long-term changes in glycemic traits. Research Design and Methods: Sixteen fasting glucose-raising loci were genotyped in middle-aged adults from the Gene x Lifestyle interactions And Complex traits Involved in Elevated disease Risk (GLACIER) Study, a population-based prospective cohort study from northern Sweden. Genotypes were tested for association with baseline fasting and 2-h postchallenge glycemia (N = 16,330), and for changes in these glycemic traits during a 10-year follow-up period (N = 4,059). Results: Cross-sectional directionally consistent replication with fasting glucose concentrations was achieved for 12 of 16 variants; 10 variants were also associated with impaired fasting glucose (IFG) and 7 were independently associated with 2-h postchallenge glucose concentrations. In prospective analyses, the effect alleles at four loci (GCK rs4607517, ADRA2A rs10885122, DGKB-TMEM195 rs2191349, and G6PC2 rs560887) were nominally associated with worsening fasting glucose concentrations during 10-years of follow-up. MTNR1B rs10830963, which was predictive of elevated fasting glucose concentrations in cross-sectional analyses, was associated with a protective effect on postchallenge glucose concentrations during follow-up; however, this was only when baseline fasting and 2-h glucoses were adjusted for. An additive effect of multiple risk alleles on glycemic traits was observed: a weighted genetic risk score (80th vs. 20th centiles) was associated with a 0.16 mmol/l (P = 2.4 × 106^{−6}) greater elevation in fasting glucose and a 64% (95% CI: 33–201%) higher risk of developing IFG during 10 years of follow-up. Conclusions: Our findings imply that genetic profiling might facilitate the early detection of persons who are genetically susceptible to deteriorating glucose control; studies of incident type 2 diabetes and discrete cardiovascular end points will help establish whether the magnitude of these changes is clinically relevant

    The prevention of type 2 diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) affects more than 7% of adults in the US and leads to substantial personal and economic burden. In prediabetic states insulin secretion and action—potential targets of preventive interventions—are impaired. In trials lifestyle modification (i.e. weight loss and exercise) has proven effective in preventing incident T2DM in high-risk groups, although weight loss has the greatest effect. Various medications (e.g. metformin, thiazolidinediones and acarbose) can also prevent or delay T2DM. Whether diabetes-prevention strategies also ultimately prevent the development of diabetic vascular complications is unknown, but cardiovascular risk factors are favorably affected. Preventive strategies that can be implemented in routine clinical settings have been developed and evaluated. Widespread application has, however, been limited by local financial considerations, even though cost-effectiveness might be achieved at the population level
    corecore