8 research outputs found

    Automation and Robotics Used in Hydroponic System

    Get PDF
    Hydroponic system requires periodic labor, a systematic approach, repetitive motion and a structured environment. Automation, robotics and IoT have allowed farmers to monitoring all the variables in plant, root zone and environment under hydroponics. This research introduces findings in design with real time operating systems based on microcontrollers; pH fuzzy logic control system for nutrient solution in embed and flow hydroponic culture; hydroponic system in combination with automated drip irrigation; expert system-based automation system; automated hydroponics nutrition plants systems; hydroponic management and monitoring system for an intelligent hydroponic system using internet of things and web technology; neural network-based fault detection in hydroponics; additional technologies implemented in hydroponic systems and robotics in hydroponic systems. The above advances will improve the efficiency of hydroponics to increase the quality and quantity of the produce and pose an opportunity for the growth of the hydroponics market in near future

    Models Fitting to Pattern Recognition in Hyperspectral Images

    Get PDF
    Worldwide, the concern on food safety, for example, on agriculture products, has become a topic with huge relevance. Nowadays, hyperspectral imaging systems for rapid detection of dangerous agents have emerged in response to these needs. In this research project, we proposed a new algorithm for Salmonella typhimurium detection on tomato surfaces in visible range (400–1000 nm). Gaussian model was used as a way to take out a model that could be calculated its definite integral; the final result of this algorithm is the area under curve (AUC), which gives a quantitative approach of spectral signatures. Three doses (5, 10, and 15 μL) and a control response (0 μL) were spread out on 20 tomatoes’ surface. Subsequently, it was observed that some decrease responses with higher dose; also, numerically this pattern was seen with the help of AUC value. As a last step, a single factor analysis of variance showed no significance due to doses. Despite this outcome, the algorithm provides to be a good methodology for pathogen detection

    Characterization of Mature Cladodes of Opuntia ficus-indica L. Using Morphological and Colorimetric Descriptors

    Get PDF
    Mexico is the world's leading producer of Opuntia ficus-indica. This kind of prickly pear is the most widespread and most commercially important cactus in Mexico. Morphological and colorimetric descriptors are among the most important agronomic traits because these parameters affect the yield, in such a way, the objective of the present research was to present a fast and reliable methodology to obtain the functional relationship in shape and color parameters of O. ficus indica cladodes, using a smartphone, a color meter, and open-access software. The acquisition and processing of images discovered interesting relationships between the Opuntia cladode's morphological characteristics, as well as colorimetric parameters of the cladodes. The non-linear data behaviors were fitted using deterministic models and CurveExpert software. Results of the study revealed that the best morphological descriptors were Circularity vs. Perimeter (r= 0.9815) and Aspect ratio vs. Roundness  (r= 0.9999).  In addition, mean values of the L*, C, and H color parameters were displayed in a window of a computer program online. It was found that the a-C relationship of the color parameters had the highest correlation coefficient (0.999). Therefore, it can be concluded that the morphological descriptors Circularity vs. Perimeter, Aspect Rate vs. Roundness, and a*-C color parameter can predict quickly and precisely the quality of O. ficus-indica

    Sustained Release Of Calcium Hydroxide From Poly(DL-lactide-co-glycolide) Acid Microspheres For Apexification

    Get PDF
    Calcium hydroxide (Ca(OH)2) loaded poly(DL-lactide-co-glycolide) acid (PLGA) microspheres (MS) might be employed for apexification requiring a sustained release of Ca++. The aim of this study was to formulate and characterize Ca(OH)2-PLGA-MS. The Ca(OH)2-loaded MS were prepared by either oil-in-water (O/W) or water-in-oil/in-water (W/O/W) emulsion solvent evaporation technique. MS produced by the O/W technique exhibited a larger diameter (18.63 ± 7.23 μm) than the MS produced by the W/O/W technique (15.25 ± 7.37 μm) (Mann Whitney U test P \u3c 0.001). The Ca(OH)2 encapsulation efficiency and Ca++ release were calculated from data obtained by absorption techniques. Ca++ release profile was evaluated for 30 days. The percentage of encapsulation efficiency of the O/W-produced MS was higher (24%) than the corresponding percentage of the W/O/W-produced MS (11%). O/W- and W/O/W-produced MS released slower and lower Ca++ than a control Ca(OH)2 paste with polyethylene glycol 400 (ANOVA 1 way, Tukey HSD P \u3c 0.01). O/W-produced MS released higher Ca++ than W/O/W-produced MS (statistically significant differences with t-Student test). We concluded that Ca(OH)2-PLGA-MS were successfully formulated; the technique of formulation influenced on the size, encapsulation efficiency and release profile. The MS were better sustained release system than the Ca(OH)2 paste

    Hyperspectral signatures and reflectance models related to the ripening index in four grape varieties

    Get PDF
    The preference for the consumption of red wine in Mexico is increasing because its components derived from the grape are attributed to health benefits. The quality of wine depends mostly on the vineyard conditions. The objective of this study was able to differentiate the physicochemical composition in the harvest stage of four varieties of red grapes that are used in the production of wine to relate their maturation with those of their hyperspectral signatures. Various parameters including pH, total soluble solids, color, weight, and morphology were determined from the bunches of grapes. Concerning the maturity index, it was observed that the grapes with the highest degree of maturity were Shiraz and Merlot at harvest time. The pH of grape juice is a measure of active acidity; the texture is considered a quick and inexpensive technique. The hyperspectral signatures reflectances versus color, total soluble solids, morphology, weight, texture, and pH for each grape variety was best fitted with Gaussian curves of order 8 to Cabernet sauvignon and Merlot, 7 to Malbec, and 5 to Shiraz with R2 above 0.99

    Production and Characterization of Biocomposite Films of Bacterial Cellulose from Kombucha and Coated with Chitosan

    No full text
    The purpose of this research is to produce and characterize bacterial cellulose (BC) films coated with chitosan (BC-CH). BC films were produced in a fermentation medium based on Camellia sinensis tea and dextrose (12 days at 25 °C) and subsequently treated with coating-forming solutions (CFSs) based on chitosan (BC-CH 0.5%, BC-CH 1.0%, and BC-CH 1.5%). As a result, the FTIR spectra of BC and BC-CH 1.5% showed the main characteristic bands of cellulose and chitosan. In the physicochemical characterization of the films, it was found that the incorporation of the chitosan coatings did not affect the thickness; however, it decreased the luminosity (L*) and increased redness (a*), yellowness (b*), and opacity (75.24%). Additionally, the light absorption properties in the UV-Vis range were improved. Furthermore, the application of the CFSs increased: the solubility (64.91%), the antimicrobial activity against S. aureus (6.55 mm) and E. coli (8.25 mm), as well as the antioxidant activity (57.71% and 24.57% free radical scavenging activity), and the content of total phenols (2.45 mg GAE/g). Finally, our results suggest that the BC-CH films developed in the present study show a potential application as active packaging material for food
    corecore