76 research outputs found

    Object-Level Reasoning with Logics Encoded in HOL Light

    Get PDF
    We present a generic framework that facilitates object level reasoning with logics that are encoded within the Higher Order Logic theorem proving environment of HOL Light. This involves proving statements in any logic using intuitive forward and backward chaining in a sequent calculus style. It is made possible by automated machinery that take care of the necessary structural reasoning and term matching automatically. Our framework can also handle type theoretic correspondences of proofs, effectively allowing the type checking and construction of computational processes via proof. We demonstrate our implementation using a simple propositional logic and its Curry-Howard correspondence to the lambda-calculus, and argue its use with linear logic and its various correspondences to session types.Comment: In Proceedings LFMTP 2020, arXiv:2101.0283

    Formalising the Foundations of Discrete Reinforcement Learning in Isabelle/HOL

    Get PDF
    We present a formalisation of finite Markov decision processes with rewards in the Isabelle theorem prover. We focus on the foundations required for dynamic programming and the use of reinforcement learning agents over such processes. In particular, we derive the Bellman equation from first principles (in both scalar and vector form), derive a vector calculation that produces the expected value of any policy p, and go on to prove the existence of a universally optimal policy where there is a discounting factor less than one. Lastly, we prove that the value iteration and the policy iteration algorithms work in finite time, producing an epsilon-optimal and a fully optimal policy respectively

    Linear resources in Isabelle/HOL

    Get PDF
    We present a formal framework for process composition based on actions that are specified by their input and output resources. The correctness of these compositions is verified by translating them into deductions in intuitionistic linear logic. As part of the verification we derive simple conditions on the compositions which ensure well-formedness of the corresponding deduction when satisfied. We mechanise the whole framework, including a deep embedding of ILL, in the proof assistant Isabelle/HOL. Beyond the increased confidence in our proofs, this allows us to automatically generate executable code for our verified definitions. We demonstrate our approach by formalising part of the simulation game Factorio and modelling a manufacturing process in it. Our framework guarantees that this model is free of bottlenecks

    Formalising Geometric Axioms for Minkowski Spacetime and Without-Loss-of-Generality Theorems

    Get PDF
    This contribution reports on the continued formalisation of an axiomatic system for Minkowski spacetime (as used in the study of Special Relativity) which is closer in spirit to Hilbert's axiomatic approach to Euclidean geometry than to the vector space approach employed by Minkowski. We present a brief overview of the axioms as well as of a formalisation of theorems relating to linear order. Proofs and excerpts of Isabelle/Isar scripts are discussed, with a focus on the use of symmetry and reasoning "without loss of generality".Comment: In Proceedings ADG 2021, arXiv:2112.1477
    corecore