11,760 research outputs found

    Some n-p (Hg,Cd)Te photodiodes for 8-14 micrometer heterodyne applications

    Get PDF
    The results describing the dc and CO2 laser heterodyne characteristics of a three element photodiode array and single element and four element photodiode arrays are presented. The measured data shows that the n(+)-p configuration is capable of achieving bandwidths of 475 to 725 MHz and noise equivalent powers of 3.2 x 10 to the minus 20th power W/Hz at 77 K and 1.0 x 10 to the minus 19th power W/Hz at 145 K. The n(+)-n(-)-p photodiodes exhibited wide bandwidths (approximately 2.0 GHz) and fairly good effective heterodyne quantum efficiencies (approximately 13-30 percent at 2.0 GHz). Noise equivalent powers ranging from 1.44 x 10 to the minus 19th power W/Hz to 6.23 x 10 to the minus 20th power W/Hz were measured at 2.0 GHz

    Advanced underwater lift device

    Get PDF
    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications

    Advanced collapsible tank for liquid containment

    Get PDF
    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport

    Vacuum Instability in Chern-Simons Gravity

    Full text link
    We explore perturbations about a Friedmann-Robertson-Walker background in Chern-Simons gravity. At large momenta one of the two circularly polarized tensor modes becomes ghostlike. We argue that nevertheless the theory does not exhibit classical runaway solutions, except possibly in the relativistic nonlinear regime. However, the ghost modes cause the vacuum state to be quantum mechanically unstable, with a decay rate that is naively infinite. The decay rate can be made finite only if one interprets the theory as an effective quantum field theory valid up to some momentum cutoff, which violates Lorentz invariance. By demanding that the energy density in photons created by vacuum decay over the lifetime of the Universe not violate observational bounds, we derive strong constraints on the two dimensional parameter space of the theory, consisting of the cutoff and the Chern-Simons mass.Comment: 8 pages, 2 figures; final published versio

    SMIL State: an architecture and implementation for adaptive time-based web applications

    Get PDF
    In this paper we examine adaptive time-based web applications (or presentations). These are interactive presentations where time dictates which parts of the application are presented (providing the major structuring paradigm), and that require interactivity and other dynamic adaptation. We investigate the current technologies available to create such presentations and their shortcomings, and suggest a mechanism for addressing these shortcomings. This mechanism, SMIL State, can be used to add user-defined state to declarative time-based languages such as SMIL or SVG animation, thereby enabling the author to create control flows that are difficult to realize within the temporal containment model of the host languages. In addition, SMIL State can be used as a bridging mechanism between languages, enabling easy integration of external components into the web application. Finally, SMIL State enables richer expressions for content control. This paper defines SMIL State in terms of an introductory example, followed by a detailed specification of the State model. Next, the implementation of this model is discussed. We conclude with a set of potential use cases, including dynamic content adaptation and delayed insertion of custom content such as advertisements. © 2009 Springer Science+Business Media, LLC

    Spectral Shape of Check-Hybrid GLDPC Codes

    Full text link
    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South Africa. A minor typo in equation (9) has been correcte

    Resonantly enhanced and diminished strong-field gravitational-wave fluxes

    Full text link
    The inspiral of a stellar mass (1−100 M⊙1 - 100\,M_\odot) compact body into a massive (105−107 M⊙10^5 - 10^7\,M_\odot) black hole has been a focus of much effort, both for the promise of such systems as astrophysical sources of gravitational waves, and because they are a clean limit of the general relativistic two-body problem. Our understanding of this problem has advanced significantly in recent years, with much progress in modeling the "self force" arising from the small body's interaction with its own spacetime deformation. Recent work has shown that this self interaction is especially interesting when the frequencies associated with the orbit's θ\theta and rr motions are in an integer ratio: Ωθ/Ωr=βθ/βr\Omega_\theta/\Omega_r = \beta_\theta/\beta_r, with βθ\beta_\theta and βr\beta_r both integers. In this paper, we show that key aspects of the self interaction for such "resonant" orbits can be understood with a relatively simple Teukolsky-equation-based calculation of gravitational-wave fluxes. We show that fluxes from resonant orbits depend on the relative phase of radial and angular motions. The purpose of this paper is to illustrate in simple terms how this phase dependence arises using tools that are good for strong-field orbits, and to present a first study of how strongly the fluxes vary as a function of this phase and other orbital parameters. Future work will use the full dissipative self force to examine resonant and near resonant strong-field effects in greater depth, which will be needed to characterize how a binary evolves through orbital resonances.Comment: 25 pages, 6 figures, 4 tables. Accepted to Phys Rev D; accepted version posted here, including referee feedback and other useful comment

    Growth Rate of the Weight Distribution of Doubly-Generalized LDPC Codes: General Case and Efficient Evaluation

    Full text link
    The growth rate of the weight distribution of irregular doubly-generalized LDPC (D-GLDPC) codes is developed and in the process, a new efficient numerical technique for its evaluation is presented. The solution involves simultaneous solution of a 4 x 4 system of polynomial equations. This represents the first efficient numerical technique for exact evaluation of the growth rate, even for LDPC codes. The technique is applied to two example D-GLDPC code ensembles.Comment: 6 pages, 1 figure. Proc. IEEE Globecom 2009, Hawaii, USA, November 30 - December 4, 200
    • …
    corecore