583 research outputs found
Hoop conjecture for colliding black holes : non-time-symmetric initial data
The hoop conjecture is well confirmed in momentarily static spaces, but it
has not been investigated systematically for the system with relativistic
motion. To confirm the hoop conjecture for non-time-symmetric initial data, we
consider the initial data of two colliding black holes with momentum and search
an apparent horizon that encloses two black holes. In testing the hoop
conjecture, we use two definitions of gravitational mass : one is the ADM mass
and the other is the quasi-local mass defined by Hawking. Although both
definitions of gravitational mass give fairly consistent picture of the hoop
conjecture, the hoop conjecture with the Hawking mass can judge the existence
of an apparent horizon for wider range of parameters of the initial data
compared to the ADM mass.Comment: 15pages, 4 figure
Irrotational binary neutron stars in quasiequilibrium
We report on numerical results from an independent formalism to describe the
quasi-equilibrium structure of nonsynchronous binary neutron stars in general
relativity. This is an important independent test of controversial numerical
hydrodynamic simulations which suggested that nonsynchronous neutron stars in a
close binary can experience compression prior to the last stable circular
orbit. We show that, for compact enough stars the interior density increases
slightly as irrotational binary neutron stars approach their last orbits. The
magnitude of the effect, however, is much smaller than that reported in
previous hydrodynamic simulations.Comment: 4 pages, 2 figures, revtex, accepted for publication in Phys. Rev.
Flat space physics from holography
We point out that aspects of quantum mechanics can be derived from the
holographic principle, using only a perturbative limit of classical general
relativity. In flat space, the covariant entropy bound reduces to the
Bekenstein bound. The latter does not contain Newton's constant and cannot
operate via gravitational backreaction. Instead, it is protected by - and in
this sense, predicts - the Heisenberg uncertainty principle.Comment: 11 pages, 3 figures; v2: minor correction
The collision of two slowly rotating, initially non boosted, black holes in the close limit
We study the collision of two slowly rotating, initially non boosted, black
holes in the close limit. A ``punctures'' modification of the Bowen - York
method is used to construct conformally flat initial data appropriate to the
problem. We keep only the lowest nontrivial orders capable of giving rise to
radiation of both gravitational energy and angular momentum. We show that even
with these simplifications an extension to higher orders of the linear
Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with
the evolution equations of the leading contributing multipoles. This extension
is derived, together with appropriate extensions of the Regge-Wheeler and
Zerilli equations. The data is numerically evolved using these equations, to
obtain the asymptotic gravitational wave forms and amplitudes. Expressions for
the radiated gravitational energy and angular momentum are derived and used
together with the results of the numerical evolution to provide quantitative
expressions for the relative contribution of different terms, and their
significance is analyzed.Comment: revtex, 18 pages, 2 figures. Misprints corrected. To be published in
Phys. Rev.
Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues
Background DNA methylation variability regions (MVRs) across the oestrogen receptor alpha (ESR1) gene have been identified in peripheral blood cells from breast cancer patients and healthy individuals. In contrast to promoter methylation, gene body methylation may be important in maintaining active transcription. This study aimed to assess MVRs in ESR1 in breast cancer cell lines, tumour biopsies and exfoliated epithelial cells from expressed breast milk (EBM), to determine their significance for ESR1 transcription. Methods DNA methylation levels in eight MVRs across ESR1 were assessed by pyrosequencing bisulphite-converted DNA from three oestrogen receptor (ER)-positive and three ER-negative breast cancer cell lines. DNA methylation and expression were assessed following treatment with DAC (1 μM), or DMSO (controls). ESR1 methylation levels were also assayed in DNA from 155 invasive ductal carcinoma biopsies provided by the Breast Cancer Campaign Tissue Bank, and validated with DNA methylation profiles from the TCGA breast tumours (n = 356 ER-pos, n = 109 ER-neg). DNA methylation was profiled in exfoliated breast epithelial cells from EBM using the Illumina 450 K (n = 36) and pyrosequencing in a further 53 donor samples. ESR1 mRNA levels were measured by qRT-PCR. Results We show that ER-positive cell lines had unmethylated ESR1 promoter regions and highly methylated intragenic regions (median, 80.45%) while ER-negative cells had methylated promoters and lower intragenic methylation levels (median, 38.62%). DAC treatment increased ESR1 expression in ER-negative cells, but significantly reduced methylation and expression of ESR1 in ER-positive cells. The ESR1 promoter was unmethylated in breast tumour biopsies with high levels of intragenic methylation, independent of ER status. However, ESR1 methylation in the strongly ER-positive EBM DNA samples were very similar to ER-positive tumour cell lines. Conclusion DAC treatment inhibited ESR1 transcription in cells with an unmethylated ESR1 promoter and reduced intragenic DNA methylation. Intragenic methylation levels correlated with ESR1 expression in homogenous cell populations (cell lines and exfoliated primary breast epithelial cells), but not in heterogeneous tumour biopsies, highlighting the significant differences between the in vivo tumour microenvironment and individual homogenous cell types. These findings emphasise the need for care when choosing material for epigenetic research and highlights the presence of aberrant intragenic methylation levels in tumour tissue
Brane Cosmology in the Background of D-Brane with NS B Field
We study the cosmological evolution of the four-dimensional universe on the
probe D3-brane in geodesic motion in the curved background of the source
Dp-brane with non-zero NS B field. The Friedman equations describing the
expansion of the brane universe are obtained and analyzed for various limits.
We elaborate on corrections to the cosmological evolution due to nonzero NS B
field.Comment: 13 pages, LaTeX, revised version with minor corrections to appear in
Phys. Rev.
Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
We analyze the signal processing required for the optimal detection of a
stochastic background of gravitational radiation using laser interferometric
detectors. Starting with basic assumptions about the statistical properties of
a stochastic gravity-wave background, we derive expressions for the optimal
filter function and signal-to-noise ratio for the cross-correlation of the
outputs of two gravity-wave detectors. Sensitivity levels required for
detection are then calculated. Issues related to: (i) calculating the
signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii)
performing the data analysis in the presence of nonstationary detector noise,
(iii) combining data from multiple detector pairs to increase the sensitivity
of a stochastic background search, (iv) correlating the outputs of 4 or more
detectors, and (v) allowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer
simulation which mimics the generation and detection of a simulated stochastic
gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferometers
(LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment
given in this paper should be accessible to both theorists involved in data
analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE
Recent glitches detected in the Crab pulsar
From 2000 to 2010, monitoring of radio emission from the Crab pulsar at
Xinjiang Observatory detected a total of nine glitches. The occurrence of
glitches appears to be a random process as described by previous researches. A
persistent change in pulse frequency and pulse frequency derivative after each
glitch was found. There is no obvious correlation between glitch sizes and the
time since last glitch. For these glitches and
span two orders of magnitude. The pulsar suffered the
largest frequency jump ever seen on MJD 53067.1. The size of the glitch is
6.8 Hz, 3.5 times that of the glitch occured in
1989 glitch, with a very large permanent changes in frequency and pulse
frequency derivative and followed by a decay with time constant 21 days.
The braking index presents significant changes. We attribute this variation to
a varying particle wind strength which may be caused by glitch activities. We
discuss the properties of detected glitches in Crab pulsar and compare them
with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc
Brane cosmological perturbations
We address the question of cosmological perturbations in the context of brane
cosmology, where our Universe is a three-brane where matter is confined,
whereas gravity lives in a higher dimensional spacetime. The equations
governing the bulk perturbations are computed in the case of a general warped
universe. The results are then specialized to the case of a five-dimensional
spacetime, scenario which has recently attracted a lot of attention. In this
context, we decompose the perturbations into `scalar', `vector' and `tensor'
modes, which are familiar in the standard theory of cosmological perturbations.
The junction conditions, which relate the metric perturbations to the matter
perturbations in the brane, are then computed.Comment: 14 pages, Latex; no figur
Brane gravity, higher derivative terms and non-locality
In brane world scenarios with a bulk scalar field between two branes it is
known that 4-dimensional Einstein gravity is restored at low energies on either
brane. By using a gauge-invariant gravitational and scalar perturbation
formalism we extend the theory of weak gravity in the brane world scenarios to
higher energies, or shorter distances. We argue that weak gravity on either
brane is indistinguishable from 4-dimensional higher derivative gravity,
provided that the inter-brane distance (radion) is stabilized, that the
background bulk scalar field is changing near the branes and that the
background bulk geometry near the branes is warped. This argument holds for a
general conformal transformation to a frame in which matter on the branes is
minimally coupled to the metric. In particular, Newton's constant and the
coefficients of curvature-squared terms in the 4-dimensional effective action
are determined up to an ambiguity of adding a Gauss-Bonnet topological term. In
other words, we provide the brane-world realization of the so called
-model without utilizing a quantum theory. We discuss the appearance of
composite spin-2 and spin-0 fields in addition to the graviton on the brane and
point out a possibility that the spin-0 field may play the role of an effective
inflaton to drive brane-world inflation. Finally, we conjecture that the
sequence of higher derivative terms is an infinite series and, thus, indicates
non-locality in the brane world scenarios.Comment: Latex, 18 pages; a comment on the spurious tensor mode was added;
recovery condition of higher derivative gravity clarifie
- …