184 research outputs found

    Time-domain simulations for floating structures

    Get PDF
    In this thesis numerical and analytical investigations of wave-structure interactions are conducted within the linearised theory of water waves. The primary objective of the thesis was to develop a numerical time-domain solution method capable of simulating wave-structure interactions in three-dimensions involving axisymmetric structures. Although the solution method was developed for three-dimensional problems, many two-dimensional interactions were also simulated using an existing time-domain solution method. The numerical method for obtaining the solution of the time-domain water wave problem combines a cubic spline boundary element method (BEM) which yields a solution to the boundary integral equation with a time-stepping algorithm to advance the solution in time. The assumption regarding the axisymmetric nature of the structural geometry results in significant simplifications of the governing boundary integral equation and allows the existing BEM implementation for two-dimensional problems to be used as the basis for the solution method. The time-advancement algorithm was implemented such that radiation, scattering and floating body interactions can be simulated. Despite the focus on the time-domain investigations, the interactions were also considered in the frequency-domain to complement the time-domain results and for the purposes of verification. The analytical frequency-domain investigations are particularly relevant to highly resonant interactions where the response of the fluid and structure is related to the location of the resonance in the complex frequency plane. The complementary frequency-domain analysis was utilised in the development of a damped harmonic oscillator model to approximate the transient fluid motions in resonant scattering interactions. Passive trapped modes which can be supported by both fixed and floating structures were discovered in frequency-domain uniqueness investigations in the water-wave problem for a floating structure and their existence was confirmed in both two and three dimensions using time-domain excitation simulations. Finally, the time-domain BEM code was utilised to simulate various wave-structure interactions of practical interest.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    CV11005

    Get PDF
    Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.This report provides the main results and findings of the second underwater television survey of the various Nephrops grounds in Functional Unit 19. The survey was multi-disciplinary in nature collecting UWTV, CTD and other ecosystem data. In total 35 UWTV stations were successfully completed on the following Nephrops grounds: Bantry Bay, Galley, Cork Channels and Helvick. Raised abundance estimates for these grounds are provided for the first time based on improved knowledge of the boundaries of those areas

    CV11005

    Get PDF
    Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.This is the ninth in a time series of UWTV surveys in the western Irish Sea carried out jointly by the Marine Institute, Ireland and the Agri-Food and Biosciences Institute (AFBI), Northern Ireland. The 2011 survey was multi disciplinary in nature and this report details the final UWTV results of the 2011 survey and also documents other data collected during the survey

    Proteomics Strategy for Identifying Candidate Bioactive Proteins in Complex Mixtures: Application to the Platelet Releasate

    Get PDF
    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples

    CV11004

    Get PDF
    Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.The prawn (Nephrops norvegicus) are common in the Celtic Sea occurring in geographically distinct sandy/muddy areas were the sediment is suitable for them to construct their burrows. The Celtic Sea area (Functional Units 19-22) supports a large multi-national targeted Nephrops fishery mainly using otter trawls and yielding landings in the region of ~6,000 t annually over the last decade (ICES, 2011). Nephrops spend a great deal of time in their burrows and their emergence behaviour is influenced many factors; time of year, light intensity and tidal strength. Underwater television surveys and assessment methodologies have been developed to provide a fishery independent estimate of stock size, exploitation status and catch advice (ICES, 2009 & 2011).This is the sixth in a time series of UWTV surveys in the Celtic Sea carried out by the Marine Institute, Ireland. The 2011 survey was multi disciplinary in nature and this report details the final UWTV results of the 2011 survey and also documents other data collected during the survey

    Irregular wave runup statistics on plane beaches: application of a Boussinesq-type model incorporating a generating-absorbing sponge layer and second-order wave generation

    Get PDF
    Efficient absorption of reflected waves at the offshore boundary is a prerequisite for the accurate physical or theoretical modelling of long-duration irregular wave runup statistics at uniform, gently sloped beaches. This paper presents an implementation of the method suggested by Zhang et al. (2014) to achieve reflected wave absorption and simultaneous generation and propagation of incident waves in an existing numerical wave flume incorporating a moving boundary wavemaker. A generating–absorbing layer is incorporated within this 1DH hybrid Boussinesq-nonlinear shallow water equation model such that inshore-travelling incident waves, encompassing bound-wave structure approximately correct to second order, propagate unhindered while offshore-travelling reflected waves are absorbed. Once validated, the method is used to compile random wave runup statistics on uniform beach slopes broadly representative of dissipative, intermediate, and reflective beaches. Analyses of the individual runup time series, ensemble statistics and comparison to an empirical formula based on experimental runup data suggest that the main aspects of runup observed in the field are properly represented by the model. Existence of an upper limit on maximum runup is investigated using a simple extreme-value statistical analysis. Spectral saturation is examined by considering ensemble-averaged swash spectra for three representative beach slopes subject to incident waves with two different offshore significant wave heights. All spectra show f^−4 roll-off at high frequencies in agreement with many previous field studies. The effect is also investigated of the swash motions preceding one particular extreme runup event on the eventual maximum runup elevation

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore