61,057 research outputs found

    Measuring carrier density in parallel conduction layers of quantum Hall systems

    Full text link
    An experimental analysis for two parallel conducting layers determines the full resistivity tensor of the parallel layer, at magnetic fields where the other layer is in the quantum Hall regime. In heterostructures which exhibit parallel conduction in the modulation-doped layer, this analysis quantitatively determines the charge density in the doping layer and can be used to estimate the mobility. To illustrate one application, experimental data show magnetic freeze-out of parallel conduction in a modulation doped heterojunction. As another example, the carrier density of a minimally populated second subband in a two-subband quantum well is determined. A simple formula is derived that can estimate the carrier density in a highly resistive parallel layer from a single Hall measurement of the total system.Comment: 7 pages, 7 figure

    Fixed points of quantum gravity in higher dimensions

    Get PDF
    We study quantum gravity in more than four dimensions by means of an exact functional flow. A non-trivial ultraviolet fixed point is found in the Einstein-Hilbert theory. It is shown that our results for the fixed point and universal scaling exponents are stable. If the fixed point persists in extended truncations, quantum gravity in the metric field is asymptotically safe. We indicate physical consequences of this scenario in phenomenological models with low-scale quantum gravity and large extra dimensions.Comment: Talk presented at Einstein Century Meeting, Paris, 15-22 July 200

    Straightening of a wavy strip: An elastic-plastic contact problem including snap-through

    Get PDF
    The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix

    Conceptual and socio-cognitive support for collaborative learning in videoconferencing environments

    Get PDF
    Studies have shown that videoconferences are an effective medium for facilitating communication between parties who are separated by distance. Furthermore, studies reveal that videoconferences are effective when used for distance learning, particularly when learners are engaged in complex collaborative learning tasks. However, as in face-to-face communication, learners benefit most when they receive additional support for such learning tasks. This article provides an overview of three empirical studies to illustrate more general insights regarding some of the more and less effective ways of supporting collaborative learning with videoconferencing. The focus is on conceptual support, such as structural visualization and socio-cognitive support, such as scripts. Based on the results of the three studies, conclusions can be drawn about the conceptual and socio-cognitive support measures that promote learning. Conclusions can also be reached about the need for employing both conceptual and socio-cognitive support to provide learners with the most benefit
    corecore