724 research outputs found
Swinging and tumbling of elastic capsules in shear flow
The deformation of an elastic micro-capsule in an infinite shear flow is
studied numerically using a spectral method. The shape of the capsule and the
hydrodynamic flow field are expanded into smooth basis functions. Analytic
expressions for the derivative of the basis functions permit the evaluation of
elastic and hydrodynamic stresses and bending forces at specified grid points
in the membrane. Compared to methods employing a triangulation scheme, this
method has the advantage that the resulting capsule shapes are automatically
smooth, and few modes are needed to describe the deformation accurately.
Computations are performed for capsules both with spherical and ellipsoidal
unstressed reference shape. Results for small deformations of initially
spherical capsules coincide with analytic predictions. For initially
ellipsoidal capsules, recent approximative theories predict stable oscillations
of the tank-treading inclination angle, and a transition to tumbling at low
shear rate. Both phenomena have also been observed experimentally. Using our
numerical approach we could reproduce both the oscillations and the transition
to tumbling. The full phase diagram for varying shear rate and viscosity ratio
is explored. While the numerically obtained phase diagram qualitatively agrees
with the theory, intermittent behaviour could not be observed within our
simulation time. Our results suggest that initial tumbling motion is only
transient in this region of the phase diagram.Comment: 20 pages, 7 figure
The structure of colloid-polymer mixtures
We investigate the structure of colloid-polymer mixtures by calculating the
structure factors for the Asakura-Oosawa model in the PY approximation. We
discuss the role of potential range, polymer concentration and polymer-polymer
interactions on the colloid-colloid structure. Our results compare reasonably
well with the recent experiments of Moussa\"{i}d et. al. for small wavenumber
, but we find that the Hansen-Verlet freezing criterion is violated when the
liquid phase becomes marginal.Comment: 7 pages, 4 figures, to appear in EuroPhys. Let
Crystallization and phase-separation in non-additive binary hard-sphere mixtures
We calculate for the first time the full phase-diagram of an asymmetric
non-additive hard-sphere mixture. The non-additivity strongly affects the
crystallization and the fluid-fluid phase-separation. The global topology of
the phase-diagram is controlled by an effective size-ratio y_{eff}, while the
fluid-solid coexistence scales with the depth of the effective potential well.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Swinging and tumbling of elastic capsules in shear flow
The deformation of an elastic micro-capsule in an infinite shear flow is
studied numerically using a spectral method. The shape of the capsule and the
hydrodynamic flow field are expanded into smooth basis functions. Analytic
expressions for the derivative of the basis functions permit the evaluation of
elastic and hydrodynamic stresses and bending forces at specified grid points
in the membrane. Compared to methods employing a triangulation scheme, this
method has the advantage that the resulting capsule shapes are automatically
smooth, and few modes are needed to describe the deformation accurately.
Computations are performed for capsules both with spherical and ellipsoidal
unstressed reference shape. Results for small deformations of initially
spherical capsules coincide with analytic predictions. For initially
ellipsoidal capsules, recent approximative theories predict stable oscillations
of the tank-treading inclination angle, and a transition to tumbling at low
shear rate. Both phenomena have also been observed experimentally. Using our
numerical approach we could reproduce both the oscillations and the transition
to tumbling. The full phase diagram for varying shear rate and viscosity ratio
is explored. While the numerically obtained phase diagram qualitatively agrees
with the theory, intermittent behaviour could not be observed within our
simulation time. Our results suggest that initial tumbling motion is only
transient in this region of the phase diagram.Comment: 20 pages, 7 figure
Wrinkling of microcapsules in shear flow
Elastic capsules can exhibit short wavelength wrinkling in external shear
flow. We analyse this instability of the capsule shape and use the length scale
separation between the capsule radius and the wrinkling wavelength to derive
analytical results both for the threshold value of the shear rate and for the
critical wave-length of the wrinkling. These results can be used to deduce
elastic parameters from experiments.Comment: 4 pages, 2 figures, submitted to PR
Coarse-graining polymers as soft colloids
We show how to coarse grain polymers in a good solvent as single particles,
interacting with density-independent or density-dependent interactions. These
interactions can be between the centres of mass, the mid-points or end-points
of the polymers. We also show how to extend these methods to polymers in poor
solvents and mixtures of polymers. Treating polymers as soft colloids can
greatly speed up the simulation of complex many-polymer systems, including
polymer-colloid mixtures.Comment: to appear in Physica A, special STATPHYS 2001 edition. Content of
invited talk by AA
Micro-Capsules in Shear Flow
This paper deals with flow-induced shape transitions of elastic capsules. The
state of the art concerning both theory and experiments is briefly reviewed
starting with dynamically induced small deformation of initially spherical
capsules and the formation of wrinkles on polymerized membranes. Initially
non-spherical capsules show tumbling and tank-treading motion in shear flow.
Theoretical descriptions of the transition between these two types of motion
assuming a fixed shape are at variance with the full capsule dynamics obtained
numerically. To resolve the discrepancy, we expand the exact equations of
motion for small deformations and find that shape changes play a dominant role.
We classify the dynamical phase transitions and obtain numerical and analytical
results for the phase boundaries as a function of viscosity contrast, shear and
elongational flow rate. We conclude with perspectives on timedependent flow, on
shear-induced unbinding from surfaces, on the role of thermal fluctuations, and
on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure
Phase separation of a multiple occupancy lattice gas
A binary lattice gas model that allows for multiple occupancy of lattice
sites, inspired by recent coarse-grained descriptions of solutions of
interacting polymers, is investigated by combining the steepest descent
approximation with an exploration of the multidimensional energy landscape, and
by Gibbs ensemble Monte Carlo simulations. The one-component version of the
model, involving on site and nearest neighbour interactions, is shown to
exhibit microphase separation into two sub-lattices with different mean
occupation numbers. The symmetric two-component version of the multiple
occupancy lattice gas is shown to exhibit a demixing transition into two phases
above a critical mean occupation number.Comment: submitted to Journal of Physics
- …