215 research outputs found

    Tracing exogenous surfactant in vivo in rabbits by the natural variation of 13C

    Get PDF
    BACKGROUND: Respiratory Distress Syndrome (RDS) is a prematurity-related breathing disorder caused by a quantitative deficiency of pulmonary surfactant. Surfactant replacement therapy is effective for RDS newborns, although treatment failure has been reported. The aim of this study is to trace exogenous surfactant by 13C variation and estimate the amount reaching the lungs at different doses of the drug. METHODS: Forty-four surfactant-depleted rabbits were obtained by serial bronchoalveolar lavages (BALs), that were merged into a pool (BAL pool) for each animal. Rabbits were in nasal continuous positive airway pressure and treated with 0, 25, 50, 100 or 200 mg/kg of poractant alfa by InSurE. After 90 min, rabbits were depleted again and a new pool (BAL end experiment) was collected. Disaturated-phosphatidylcholine (DSPC) was measured by gas chromatography. DSPC-Palmitic acid (PA) 13C/12C was analyzed by isotope ratio mass spectrometry. One-way non-parametric ANOVA and post-hoc Dunn's multiple comparison were used to assess differences among experimental groups. RESULTS: Based on DSPC-PA 13C/12C in BAL pool and BAL end experiment, the estimated amount of exogenous surfactant ranged from 61 to 87% in dose-dependent way (p < 0.0001) in animals treated with 25 up to 200 mg/kg. Surfactant administration stimulated endogenous surfactant secretion. The percentage of drug recovered from lungs did not depend on the administered dose and accounted for 31% [24-40] of dose. CONCLUSIONS: We reported a risk-free method to trace exogenous surfactant in vivo. It could be a valuable tool for assessing, alongside the physiological response, the delivery efficiency of surfactant administration techniques

    Early Respiratory Management of Respiratory Distress Syndrome in Very Preterm Infants and Bronchopulmonary Dysplasia: A Case-Control Study

    Get PDF
    BACKGROUND: In the period immediately after birth, preterm infants are highly susceptible to lung injury. Early nasal continuous positive airway pressure (ENCPAP) is an attempt to avoid intubation and may minimize lung injury. In contrast, ENCPAP can fail, and at that time surfactant rescue can be less effective. OBJECTIVE: To compare the pulmonary clinical course and outcome of very preterm infants (gestational age 25–32 weeks) with respiratory distress syndrome (RDS) who started with ENCPAP and failed (ECF group), with a control group of infants matched for gestational age, who were directly intubated in the delivery room (DRI group). Primary outcome consisted of death during admission or bronchopulmonary dysplasia (BPD). RESULTS: 25 infants were included in the ECF group and 50 control infants matched for gestational age were included in the DRI group. Mean gestational age and birth weight in the ECF group were 29.7 weeks and 1,393 g and in the DRI group 29.1 weeks and 1,261 g (p = NS). The incidence of BPD was significantly lower in the ECF group than in the DRI group (4% vs. 35%; P<0.004; OR 12.6 (95% CI 1.6–101)). Neonatal mortality was similar in both groups (4%). The incidence of neonatal morbidities such as severe cerebral injury, patent ductus arteriosus, necrotizing enterocolitis and retinopathy of prematurity, was not significantly different between the two groups. CONCLUSION: A trial of ENCPAP at birth may reduce the incidence of BPD and does not seem to be detrimental in very preterm infants. Randomized controlled trials are needed to test whether early respiratory management of preterm infants with RDS plays an important role in the development of BPD

    The smallest of the small: short-term outcomes of profoundly growth restricted and profoundly low birth weight preterm infants

    Full text link
    ObjectiveSurvival of preterm and very low birth weight (VLBW) infants has steadily improved. However, the rates of mortality and morbidity among the very smallest infants are poorly characterized.Study designData from the California Perinatal Quality Care Collaborative for the years 2005 to 2012 were used to compare the mortality and morbidity of profoundly low birth weight (ProLBW, birth weight 300 to 500 g) and profoundly small for gestational age (ProSGA, &lt;1st centile for weight-for-age) infants with very low birth weight (VLBW, birth weight 500 to 1500 g) and appropriate for gestational age (AGA, 5th to 95th centile for weight-for-age) infants, respectively.ResultData were available for 44 561 neonates of birth weight &lt;1500 g. Of these, 1824 were ProLBW and 648 were ProSGA. ProLBW and ProSGA differed in their antenatal risk factors from the comparison groups and were less likely to receive antenatal steroids or to be delivered by cesarean section. Only 14% of ProSGA and 21% of ProLBW infants survived to hospital discharge, compared with &gt;80% of AGA and VLBW infants. The largest increase in mortality in ProSGA and ProLBW infants occurred prior to 12 h of age, and most mortality happened in this time period. Survival of the ProLBW and ProSGA infants was positively associated with higher gestational age, receipt of antenatal steroids, cesarean section delivery and singleton birth.ConclusionSurvival of ProLBW and ProSGA infants is uncommon, and survival without substantial morbidity is rare. Survival is positively associated with receipt of antenatal steroids and cesarean delivery

    A systematic review of cooling for neuroprotection in neonates with hypoxic ischemic encephalopathy – are we there yet?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to systematically review randomized trials assessing therapeutic hypothermia as a treatment for term neonates with hypoxic ischemic encephalopathy.</p> <p>Methods</p> <p>The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL databases, reference lists of identified studies, and proceedings of the Pediatric Academic Societies were searched in July 2006. Randomized trials assessing the effect of therapeutic hypothermia by either selective head cooling or whole body cooling in term neonates were eligible for inclusion in the meta-analysis. The primary outcome was death or neurodevelopmental disability at ≥ 18 months.</p> <p>Results</p> <p>Five trials involving 552 neonates were included in the analysis. Cooling techniques and the definition and severity of neurodevelopmental disability differed between studies. Overall, there is evidence of a significant effect of therapeutic hypothermia on the primary composite outcome of death or disability (RR: 0.78, 95% CI: 0.66, 0.92, NNT: 8, 95% CI: 5, 20) as well as on the single outcomes of mortality (RR: 0.75, 95% CI: 0.59, 0.96) and neurodevelopmental disability at 18 to 22 months (RR: 0.72, 95% CI: 0.53, 0.98). Adverse effects include benign sinus bradycardia (RR: 7.42, 95% CI: 2.52, 21.87) and thrombocytopenia (RR: 1.47, 95% CI: 1.07, 2.03, NNH: 8) without deleterious consequences.</p> <p>Conclusion</p> <p>In general, therapeutic hypothermia seems to have a beneficial effect on the outcome of term neonates with moderate to severe hypoxic ischemic encephalopathy. Despite the methodological differences between trials, wide confidence intervals, and the lack of follow-up data beyond the second year of life, the consistency of the results is encouraging. Further research is necessary to minimize the uncertainty regarding efficacy and safety of any specific technique of cooling for any specific population.</p

    Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia.</p> <p>Objective</p> <p>To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury.</p> <p>Methods</p> <p>129 d gestational age lambs (n = 5-8/gp; term = 150 d) were operatively delivered and ventilated after exposure to either 1) no medication, 2) antenatal maternal IM Betamethasone 0.5 mg/kg 24 h prior to delivery, 3) 0.5 mg/kg Dexamethasone IV at delivery or 4) Cortisol 2 mg/kg IV at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (<it>V</it><sub>T</sub>) to 15 mL/kg for 15 min and then given surfactant. The lambs were ventilated with <it>V</it><sub>T </sub>8 mL/kg and PEEP 5 cmH<sub>2</sub>0 for 2 h 45 min.</p> <p>Results</p> <p>High V<sub>T </sub>ventilation caused a deterioration of lung physiology, lung inflammation and injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA expression, which was unaffected by corticosteroids.</p> <p>Conclusions</p> <p>Antenatal betamethasone decreased lung injury without decreasing lung inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the doses tested, did not have important effects on lung function or injury, suggesting that corticosteroids given at birth will not decrease resuscitation mediated injury.</p

    A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

    Get PDF
    Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia

    Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience

    Get PDF
    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders
    • …
    corecore