3,958 research outputs found

    Primordial density perturbations with running spectral index: impact on non-linear cosmic structures

    Full text link
    (abridged) We explore the statistical properties of non-linear cosmic structures in a flat Λ\LambdaCDM cosmology in which the index of the primordial power spectrum for scalar perturbations is allowed to depend on the scale. Within the inflationary paradigm, the running of the scalar spectral index can be related to the properties of the inflaton potential, and it is hence of critical importance to test it with all kinds of observations, which cover the linear and non-linear regime of gravitational instability. We focus on the amount of running αS,0\alpha_{\mathrm{S},0} allowed by an updated combination of CMB anisotropy data and the 2dF Galaxy Redshift Survey. Our analysis constrains αS,0=−0.051−0.053+0.047\alpha_{\mathrm{S},0} = -0.051^{+0.047}_{-0.053} (−0.034−0.040+0.039)(-0.034^{+0.039}_{-0.040}) at 95% Confidence Level when (not) taking into account primordial gravitational waves in a ratio as predicted by canonical single field inflation, in agreement with other works. For the cosmological models best fitting the data both with and without running we studied the abundance of galaxy clusters and of rare objects, the halo bias, the concentration of dark matter halos, the Baryon Acoustic Oscillation, the power spectrum of cosmic shear, and the Integrated Sachs-Wolfe effect. We find that counting galaxy clusters in future X-ray and Sunyaev-Zel'dovich surveys could discriminate between the two models, more so if broad redshift information about the cluster samples will be available. Likewise, measurements of the power spectrum of cosmological weak lensing as performed by planned all-sky optical surveys such as EUCLID could detect a running of the primordial spectral index, provided the uncertainties about the source redshift distribution and the underlying matter power spectrum are well under control.Comment: 17 pages, 14 figures, 4 tables. Accepted for publication on MNRA

    Optical Potentials Derived from Nucleon-Nucleon Chiral Potentials at N4LO

    Full text link
    Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In a previous paper we derived a theoretical optical potential from NN chiral potentials at fourth order (N3LO). In the present work we use NN chiral potentials at fifth order (N4LO), with the purpose to check the convergence and to assess the theoretical errors associated with the truncation of the chiral expansion in the construction of an optical potential. Methods: The optical potential is derived as the first-order term within the spectator expansion of the nonrelativistic multiple scattering theory and adopting the impulse approximation and the optimum factorization approximation. Results: The pp and np Wolfenstein amplitudes and the cross section, analyzing power, and spin rotation of elastic proton scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton energy of 200 MeV. The results obtained with different versions of chiral potentials at N4LO are compared. Conclusions: Our results indicate that convergence has been reached at N4LO. The agreement with the experimental data is comparable with the agreement obtained in our previous work. We confirm that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton-nucleus scattering.Comment: Physical Review C, in prin

    Isocurvature fluctuations in the effective Newton's constant

    Get PDF
    We present a new isocurvature mode present in scalar-tensor theories of gravity that corresponds to a regular growing solution in which the energy of the relativistic degrees of freedom and the scalar field that regulates the gravitational strength compensate during the radiation dominated epoch on scales much larger than the Hubble radius. We study this isocurvature mode and its impact on anisotropies of the cosmic microwave background for the simplest scalar-tensor theory, i.e. the extended Jordan-Brans-Dicke gravity, in which the scalar field also drives the acceleration of the Universe. We use Planck data to constrain the amplitude of this isocurvature mode in the case of fixed correlation with the adiabatic mode and we show how this mode could be generated in a simple two field inflation model.Comment: Version updated to match published version. No changes in the result

    Study of a Class of Four Dimensional Nonsingular Cosmological Bounces

    Full text link
    We study a novel class of nonsingular time-symmetric cosmological bounces. In this class of four dimensional models the bounce is induced by a perfect fluid with a negative energy density. Metric perturbations are solved in an analytic way all through the bounce. The conditions for generating a scale invariant spectrum of tensor and scalar metric perturbations are discussed.Comment: 16 pages, 10 figure

    Microscopic Optical Potentials: recent achievements and future perspectives

    Full text link
    Few years ago we started the investigation of microscopic Optical Potentials (OP) in the framework of chiral effective field theories and published our results in a series of manuscripts. Starting from the very first work, where a microscopic OP was introduced following the multiple scattering procedure of Watson, and then followed by more recent works, where the agreement with experimental data and phenomenological approaches was successfully tested, we finally arrived at a description of elastic scattering processes off non-zero spin nuclei. Among our achievements, it is worth mentioning the partial inclusion of three-nucleon forces, and the extension of our OP to antiproton-nucleus elastic scattering. Despite the overall good agreement with empirical data obtained so far, we do believe that several improvements and upgrades of the present approach are still to be achieved. In this short essay we would like to address some of the most relevant achievements and discuss an interesting development that, in our opinion, is needed to further improve microscopic OPs in order to reach in a near future the same level of accuracy of the phenomenological ones.Comment: 8 pages, 4 figures, Conference proceedings of the 13th International Spring Seminar on Nuclear Physics, Sant'Angelo d'Ischia, May 15-20, 202

    Metric perturbations at reheating: the use of spherical symmetry

    Get PDF
    We consider decay of the inflaton with a quartic potential coupled to other fields, including gravity, but restricted to spherical symmetry. We describe analytically an early, quasilinear regime, during which inflaton fluctuations and the metric functions are driven by nonlinear effects of the decay products. We present a detailed study of the leading nonlinear effects in this regime. Results of the quasilinear approximation, in its domain of applicability, are found to be consistent with those of fully nonlinear lattice studies. We discuss how these results may be promoted to the full three dimensions.Comment: 18 pages, revtex, 2 figure

    Adiabatic and Isocurvature Perturbations for Multifield Generalized Einstein Models

    Full text link
    Low energy effective field theories motivated by string theory will likely contain several scalar moduli fields which will be relevant to early Universe cosmology. Some of these fields are expected to couple with non-standard kinetic terms to gravity. In this paper, we study the splitting into adiabatic and isocurvature perturbations for a model with two scalar fields, one of which has a non-standard kinetic term in the Einstein-frame action. Such actions can arise, e.g., in the Pre-Big-Bang and Ekpyrotic scenarios. The presence of a non-standard kinetic term induces a new coupling between adiabatic and isocurvature perturbations which is non-vanishing when the potential for the matter fields is nonzero. This coupling is un-suppressed in the long wavelength limit and thus can lead to an important transfer of power from the entropy to the adiabatic mode on super-Hubble scales. We apply the formalism to the case of a previously found exact solution with an exponential potential and study the resulting mixing of adiabatic and isocurvature fluctuations in this example. We also discuss the possible relevance of the extra coupling in the perturbation equations for the process of generating an adiabatic component of the fluctuations spectrum from isocurvature perturbations without considering a later decay of the isocurvature component.Comment: 11 pages, 3 figures, one equation corrected, typos fixed, conclusions unchange
    • …
    corecore