7 research outputs found

    Dynamical Vacuum in Quantum Cosmology

    Get PDF
    By regarding the vacuum as a perfect fluid with equation of state p=-rho, de Sitter's cosmological model is quantized. Our treatment differs from previous ones in that it endows the vacuum with dynamical degrees of freedom. Instead of being postulated from the start, the cosmological constant arises from the degrees of freedom of the vacuum regarded as a dynamical entity, and a time variable can be naturally introduced. Taking the scale factor as the sole degree of freedom of the gravitational field, stationary and wave-packet solutions to the Wheeler-DeWitt equation are found. It turns out that states of the Universe with a definite value of the cosmological constant do not exist. For the wave packets investigated, quantum effects are noticeable only for small values of the scale factor, a classical regime being attained at asymptotically large times.Comment: Latex, 19 pages, to appear in Gen. Rel. Gra

    Instabilities of one-dimensional stationary solutions of the cubic nonlinear Schrodinger equation

    Full text link
    The two-dimensional cubic nonlinear Schrodinger equation admits a large family of one-dimensional bounded traveling-wave solutions. All such solutions may be written in terms of an amplitude and a phase. Solutions with piecewise constant phase have been well studied previously. Some of these solutions were found to be stable with respect to one-dimensional perturbations. No such solutions are stable with respect to two-dimensional perturbations. Here we consider stability of the larger class of solutions whose phase is dependent on the spatial dimension of the one-dimensional wave form. We study the spectral stability of such nontrivial-phase solutions numerically, using Hill's method. We present evidence which suggests that all such nontrivial-phase solutions are unstable with respect to both one- and two-dimensional perturbations. Instability occurs in all cases: for both the elliptic and hyperbolic nonlinear Schrodinger equations, and in the focusing and defocusing case.Comment: Submitted: 13 pages, 3 figure

    Wave functions for arbitrary operator ordering in the de Sitter minisuperspace approximation

    Get PDF
    We derive exact series solutions for the Wheeler-DeWitt equation corresponding to a spatially closed Friedmann-Robertson-Walker universe with cosmological constant for arbitrary operator ordering of the scale factor of the universe. The resulting wave functions are those relevant to the approximation which has been widely used in two-dimensional minisuperspace models with an inflationary scalar field for the purpose of predicting the period of inflation which results from competing boundary condition proposals for the wave function of the universe. The problem that Vilenkin's tunneling wave function is not normalizable for general operator orderings, is shown to persist for other values of the spatial curvature, and when additional matter degrees of freedom such as radiation are included.Comment: 12 pages, revTeX-3.
    corecore