217 research outputs found

    Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification

    Get PDF
    In chronic kidney disease (CKD) vascular calcification occurs in response to deranged calcium and phosphate metabolism and is characterized by vascular smooth muscle cell (VSMC) damage and attrition. To gain mechanistic insights into how calcium and phosphate mediate calcification, we used an ex vivo model of human vessel culture. Vessel rings from healthy control subjects did not accumulate calcium with long-term exposure to elevated calcium and/or phosphate. In contrast, vessel rings from patients with CKD accumulated calcium; calcium induced calcification more potently than phosphate (at equivalent calcium-phosphate product). Elevated phosphate increased alkaline phosphatase activity in CKD vessels, but inhibition of alkaline phosphatase with levamisole did not block calcification. Instead, calcification in CKD vessels most strongly associated with VSMC death resulting from calcium- and phosphate-induced apoptosis; treatment with a pan-caspase inhibitor ZVAD ameliorated calcification. Calcification in CKD vessels was also associated with increased deposition of VSMC-derived vesicles. Electron microscopy confirmed increased deposition of vesicles containing crystalline calcium and phosphate in the extracellular matrix of dialysis vessel rings. In contrast, vesicle deposition and calcification did not occur in normal vessel rings, but we observed extensive intracellular mitochondrial damage. Taken together, these data provide evidence that VSMCs undergo adaptive changes, including vesicle release, in response to dysregulated mineral metabolism. These adaptations may initially promote survival but ultimately culminate in VSMC apoptosis and overt calcification, especially with continued exposure to elevated calcium

    Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    Get PDF
    Deletion of exon 9 from Cullin‐3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin‐RING‐ubiquitin‐ligase complexes. Bound to KLHL3, CUL3‐RBX1 ubiquitylates WNK kinases, promoting their ubiquitin‐mediated proteasomal degradation. Since WNK kinases activate Na/Cl co‐transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin‐RING‐ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto‐ubiquitylates and loses interaction with two important Cullin regulators: the COP9‐signalosome and CAND1. A novel knock‐in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases

    Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis

    Get PDF
    Background: Atherosclerotic plaques demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine (8oxoG) lesions. 8oxoG is repaired by base excision repair enzymes; however, the mechanisms regulating 8oxoG accumulation in vascular smooth muscle cells (VSMCs) and its effects on their function and in atherosclerosis are unknown. Methods: We studied levels of 8oxoG and its regulatory enzymes in human atherosclerosis, the mechanisms regulating 8oxoG repair and the base excision repair enzyme 8oxoG DNA glycosylase I (OGG1) in VSMCs in vitro, and the effects of reducing 8oxoG in VSMCs in atherosclerosis in ApoE−/− mice. Results: Human plaque VSMCs showed defective nuclear 8oxoG repair, associated with reduced acetylation of OGG1. OGG1 was a key regulatory enzyme of 8oxoG repair in VSMCs, and its acetylation was crucial to its repair function through regulation of protein stability and expression. p300 and sirtuin 1 were identified as the OGG1 acetyltransferase and deacetylase regulators, respectively, and both proteins interacted with OGG1 and regulated OGG1 acetylation at endogenous levels. However, p300 levels were decreased in human plaque VSMCs and in response to oxidative stress, suggesting that reactive oxygen species–induced regulation of OGG1 acetylation could be caused by reactive oxygen species–induced decrease in p300 expression. We generated mice that express VSMC-restricted OGG1 or an acetylation defective version (SM22α-OGG1 and SM22α-OGG1K-R mice) and crossed them with ApoE−/− mice. We also studied ApoE−/− mice deficient in OGG1 (OGG1−/−). OGG1−/− mice showed increased 8oxoG in vivo and increased atherosclerosis, whereas mice expressing VSMC-specific OGG1 but not the acetylation mutant OGG1K-R showed markedly reduced intracellular 8oxoG and reduced atherosclerosis. VSMC OGG1 reduced telomere 8oxoG accumulation, DNA strand breaks, cell death and senescence after oxidant stress, and activation of proinflammatory pathways. Conclusions: We identify defective 8oxoG base excision repair in human atherosclerotic plaque VSMCs, OGG1 as a major 8oxoG repair enzyme in VSMCs, and p300/sirtuin 1 as major regulators of OGG1 through acetylation/deacetylation. Reducing oxidative damage by rescuing OGG1 activity reduces plaque development, indicating the detrimental effects of 8oxoG on VSMC function

    Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Deletion of exon 9 from Cullin‐3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin‐RING‐ubiquitin‐ligase complexes. Bound to KLHL3, CUL3‐RBX1 ubiquitylates WNK kinases, promoting their ubiquitin‐mediated proteasomal degradation. Since WNK kinases activate Na/Cl co‐transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin‐RING‐ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto‐ubiquitylates and loses interaction with two important Cullin regulators: the COP9‐signalosome and CAND1. A novel knock‐in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.This work was supported by the British Heart Foundation (a PhD studentship to KS and PG 13 89 30577), Medical Research Council, and an ERC Starting Investigator Grant (to TK), as well as the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck, Janssen Pharmaceutica and Pfizer). The Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre

    NR4A1 Deletion in Marginal Zone B Cells Exacerbates Atherosclerosis in Mice-Brief Report.

    Get PDF
    OBJECTIVE: NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis. Approach and Results: We found that feeding Ldlr-/- mice a Western diet substantially increased Nr4a1 expression in marginal zone B (MZB) cells compared with follicular B cells. We then generated Ldlr-/- mice with complete B- or specific MZB-cell deletion of Nr4a1. Complete B-cell deletion of Nr4a1 led to increased atherosclerosis, which was accompanied by increased T follicular helper cell-germinal center axis response, as well as increased serum total cholesterol and triglycerides levels. Interestingly, specific MZB-cell deletion of Nr4a1 increased atherosclerosis in association with an increased T follicular helper-germinal center response but without any impact on serum cholesterol or triglyceride levels. Nr4a1-/- MZB cells showed decreased PDL1 (programmed death ligand-1) expression, which may have contributed to the enhanced T follicular helper response. CONCLUSIONS: Our findings reveal a previously unsuspected role for NR4A1 in the atheroprotective role of MZB cells

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies

    Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer

    Get PDF
    Background:Tasquinimod is a quinoline-3-carboxamide derivative with anti-angiogenic activity. Two open-label phase I clinical trials in patients were conducted to evaluate the safety and tolerability of tasquinimod, with additional pharmacokinetic and efficacy assessments.Methods:Patients with castration-resistant prostate cancer with no previous chemotherapy were enrolled in this study. The patients received tasquinimod up to 1 year either at fixed doses of 0.5 or 1.0 mg per day or at an initial dose of 0.25 mg per day that escalated to 1.0 mg per day.Results:A total of 32 patients were enrolled; 21 patients were maintained for >/=4 months. The maximum tolerated dose was determined to be 0.5 mg per day; but when using stepwise intra-patient dose escalation, a dose of 1.0 mg per day was well tolerated. The dose-limiting toxicity was sinus tachycardia and asymptomatic elevation in amylase. Common treatment-emergent adverse events included transient laboratory abnormalities, anaemia, nausea, fatigue, myalgia and pain. A serum prostate-specific antigen (PSA) decline of >/=50% was noted in two patients. The median time to PSA progression (>25%) was 19 weeks. Only 3 out of 15 patients (median time on study: 34 weeks) developed new bone lesions.Conclusion:Long-term continuous oral administration of tasquinimod seems to be safe, and the overall efficacy results indicate that tasquinimod might delay disease progression.British Journal of Cancer advance online publication, 15 September 2009; doi:10.1038/sj.bjc.6605322 www.bjcancer.com

    Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Get PDF
    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues
    corecore