9,011 research outputs found

    On Carbon Burning in Super Asymptotic Giant Branch Stars

    Get PDF
    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, ρign2.1×106\rho_{ign} \approx 2.1 \times 10^6 g cm3^{-3}, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of ΔMZAMS\Delta M_{\rm ZAMS}/Δfov\Delta f_{\rm{ov}}\approx 1.6 MM_{\odot}. For zero overshoot, fovf_{\rm{ov}}=0.0, our models in the ZAMS mass range \approx 8.9 to 11 MM_{\odot} show off-center carbon ignition. For canonical amounts of overshooting, fovf_{\rm{ov}}=0.016, the off-center carbon ignition range shifts to \approx 7.2 to 8.8 MM_{\odot}. Only systems with fovf_{\rm{ov}} 0.01\geq 0.01 and ZAMS mass \approx 7.2-8.0 MM_{\odot} show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table

    The Primordial Lithium Problem

    Full text link
    Big-bang nucleosynthesis (BBN) theory, together with the precise WMAP cosmic baryon density, makes tight predictions for the abundances of the lightest elements. Deuterium and 4He measurements agree well with expectations, but 7Li observations lie a factor 3-4 below the BBN+WMAP prediction. This 4-5\sigma\ mismatch constitutes the cosmic "lithium problem," with disparate solutions possible. (1) Astrophysical systematics in the observations could exist but are increasingly constrained. (2) Nuclear physics experiments provide a wealth of well-measured cross-section data, but 7Be destruction could be enhanced by unknown or poorly-measured resonances, such as 7Be + 3He -> 10C^* -> p + 9B. (3) Physics beyond the Standard Model can alter the 7Li abundance, though D and 4He must remain unperturbed; we discuss such scenarios, highlighting decaying Supersymmetric particles and time-varying fundamental constants. Present and planned experiments could reveal which (if any) of these is the solution to the problem.Comment: 29 pages, 7 figures. Per Annual Reviews policy, this is the original submitted draft. Posted with permission from the Annual Review of Nuclear and Particle Science, Volume 61. Annual Reviews, http://www.annualreviews.org . Final published version at http://www.annualreviews.org/doi/abs/10.1146/annurev-nucl-102010-13044

    Bell's Theorem from Moore's Theorem

    Full text link
    It is shown that the restrictions of what can be inferred from classically-recorded observational outcomes that are imposed by the no-cloning theorem, the Kochen-Specker theorem and Bell's theorem also follow from restrictions on inferences from observations formulated within classical automata theory. Similarities between the assumptions underlying classical automata theory and those underlying universally-unitary quantum theory are discussed.Comment: 12 pages; to appear in Int. J. General System

    Cryogenic seal remains leaktight during thermal displacement

    Get PDF
    Cryogenic seals protect the surfaces of a plastic member in a low-pressure system subjected to extreme temperature changes. The outer seal is an aluminum expansion ring bonded to the lens outer surface and the inner seal consists of a resin-filled aluminum U-ring bonded to the inner surface

    Interhemispheric comparison of atmospheric circulation features as evaluated from Nimbus satellite data. A comparison of the structure and flow characteristics of the upper troposphere and stratosphere of the Northern and Southern Hemispheres

    Get PDF
    The general circulations of the Northern and Southern Hemispheres are compared with regard to the upper troposphere and stratosphere, using atmospheric structure obtained from multi-channel radiance data from the satellite infrared spectrometer instrument aboard the Nimbus 3 spacecraft. The inter-hemispheric comparisons are based on two months of data (one summer month and one winter month) in each hemisphere. Topics studied include: (1) mean meridional circulation in the Southern Hemisphere stratosphere; (2) magnitude and distribution of tropospheric eddy heat flux; (3) relative importance of standing and transient eddies in the two hemispheres; (4) magnitudes of energy cycle components; and (5) the relation of vortex structure to the breakdown climatology of the Antarctic stratospheric polar vortex

    Reply to my Commentator - Fields

    Get PDF

    Commentary on Olmos

    Get PDF
    corecore