28 research outputs found

    Other Radiopharmaceuticals for Imaging GEP‐NET

    Get PDF
    In GEP‐NETs, especially the catecholamine and serotonin biosynthetic pathways are upregulated. Therefore, increased biosynthesis of these specific amines in GEP‐NETs enables imaging with specific amine precursors. For the catecholamine pathway, 6‐18F ‐l‐3,4‐dihydroxyphenylalanine (18F‐DOPA) is available, while for the serotonin pathway, carbon‐11‐labeled 5‐hydroxy‐l‐tryptophan ([11C]‐5‐HTP) is available as tracer. 11C‐5‐HTP PET and 18F‐DOPA PET are excellent functional imaging techniques for evaluating patients with proven pancreatic islet cell tumors and carcinoids. For both tracers, the combination with CT further improves the detection rate of NET, which shows that performing PET scans with these tracers in PET/CT scanners is beneficial for patients.Since well‐differentiated GEP‐NETs generally have a low glucose metabolism, 18F‐fluorodexyglucose (18F‐FDG) PET scanning has limited value for the primary staging of patients with well‐differentiated GEP‐NETs. However, in patients with rapidly progressive disease, dedifferentiation of GEP‐NET tumors can lead to a higher glucose metabolism in tumor cells. In these patients, 18F‐FDG PET can be of benefit for tumor staging. Also, 18F‐FDG PET can be of value when other malignancies are suspected in patients with GEP‐NETs, since these patients experience a higher incidence of these malignancies compared to the general population.Nowadays, (GEP)‐NETs can also be imaged with 68Ga‐labeled analogues of somatostatin, which are also PET tracers. Advantages of 68Ga‐labeled somatostatin analogues are the relatively easy generator‐based synthesis and the possibility to evaluate whether peptide (somatostatin) receptor radionuclide therapy (PRRT) for NETs can be considered

    The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis

    Get PDF
    VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis

    Other Radiopharmaceuticals for Imaging GEP‐NET

    No full text
    In GEP‐NETs, especially the catecholamine and serotonin biosynthetic pathways are upregulated. Therefore, increased biosynthesis of these specific amines in GEP‐NETs enables imaging with specific amine precursors. For the catecholamine pathway, 6‐18F ‐l‐3,4‐dihydroxyphenylalanine (18F‐DOPA) is available, while for the serotonin pathway, carbon‐11‐labeled 5‐hydroxy‐l‐tryptophan ([11C]‐5‐HTP) is available as tracer. 11C‐5‐HTP PET and 18F‐DOPA PET are excellent functional imaging techniques for evaluating patients with proven pancreatic islet cell tumors and carcinoids. For both tracers, the combination with CT further improves the detection rate of NET, which shows that performing PET scans with these tracers in PET/CT scanners is beneficial for patients. Since well‐differentiated GEP‐NETs generally have a low glucose metabolism, 18F‐fluorodexyglucose (18F‐FDG) PET scanning has limited value for the primary staging of patients with well‐differentiated GEP‐NETs. However, in patients with rapidly progressive disease, dedifferentiation of GEP‐NET tumors can lead to a higher glucose metabolism in tumor cells. In these patients, 18F‐FDG PET can be of benefit for tumor staging. Also, 18F‐FDG PET can be of value when other malignancies are suspected in patients with GEP‐NETs, since these patients experience a higher incidence of these malignancies compared to the general population. Nowadays, (GEP)‐NETs can also be imaged with 68Ga‐labeled analogues of somatostatin, which are also PET tracers. Advantages of 68Ga‐labeled somatostatin analogues are the relatively easy generator‐based synthesis and the possibility to evaluate whether peptide (somatostatin) receptor radionuclide therapy (PRRT) for NETs can be considered

    Moving towards a Network of Autonomous UAS Atmospheric Profiling Stations for Observations in the Earth’s Lower Atmosphere: The 3D Mesonet Concept

    No full text
    The deployment of small unmanned aircraft systems (UAS) to collect routine in situ vertical profiles of the thermodynamic and kinematic state of the atmosphere in conjunction with other weather observations could significantly improve weather forecasting skill and resolution. High-resolution vertical measurements of pressure, temperature, humidity, wind speed and wind direction are critical to the understanding of atmospheric boundary layer processes integral to air–surface (land, ocean and sea ice) exchanges of energy, momentum, and moisture; how these are affected by climate variability; and how they impact weather forecasts and air quality simulations. We explore the potential value of collecting coordinated atmospheric profiles at fixed surface observing sites at designated times using instrumented UAS. We refer to such a network of autonomous weather UAS designed for atmospheric profiling and capable of operating in most weather conditions as a 3D Mesonet. We outline some of the fundamental and high-impact science questions and sampling needs driving the development of the 3D Mesonet and offer an overview of the general concept of operations. Preliminary measurements from profiling UAS are presented and we discuss how measurements from an operational network could be realized to better characterize the atmospheric boundary layer, improve weather forecasts, and help to identify threats of severe weather
    corecore