214 research outputs found

    Recombinant Collagenlike Proteins

    Get PDF
    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering

    Polybrominated Diphenyl Ethers (PBDEs) Bibliography

    Full text link
    Bibliography on the flame retardants polybrominated diphenylethers (PBDEs)Bibliography on the breast cancer risk of polybrominated diphenylethers (PBDEs). Includes review articles, risk assessments, toxicological information, production levels and uses, cancer risk, endocrine disruption effects, childhood and developmental effects, immunological effects, neurological effects, reproductive effects, structure-activity relationships, levels in human breast milk, fat, liver and blood, levels in animals, levels in food, environmental fate, and levels in indoor air and residential exposure to PBDEs.New York State Department of Health and Department of Environmental Conservatio

    High-Affinity Binding of the NC1 Domain of Collagen VII to Laminin 5 and Collagen IV

    Get PDF
    Anchoring functions of collagen VII depend on its ability to form homotypic fibrils and to bind to other macromolecules to form heterotypic complexes. Biosensor-based binding assays were employed to analyze the kinetics of the NC1 domain-mediated binding of collagen VII to laminin 5, collagen IV, and collagen I. We showed that collagen VII interacts with laminin 5 and collagen IV with Kd values of 10-9 M. In contrast, the NC1-mediated binding to collagen I was weak with a Kd value of 10-6 M. Binding assays also showed that the NC1 domain utilizes the same region to bind to both laminin 5 and collagen IV. We postulate that the ability of the NC1 domains to bind with high affinities to laminin 5 and collagen IV facilitates stabilization of the structure of the basement membrane itself and that the NC1-collagen I interaction may be less important for stabilization of the dermal-epidermal junction

    Women, the Workplace, and Breast Cancer Risk Bibliography

    Full text link
    Bibliograhy on women, the workplace, and breast cancer riskBibliography on women, the workplace and breast cancer risk. Includes information on the history of women in the workplace, breast cancer risk due to specific occupational exposures to chemicals (dioxin, ethylene oxide, gasoline, metals, methylene chloride, pesticides, rubber, tobacco smoke, industrial chemicals, solvents, tetrachloroethylene, and vinyl chloride), breast cancer risk in specific occupations (airline attendants, cosmetologists, electrical workers, laboratory workers, religious orders (nuns), nurses, office workers, painters and printers, radium dial workers, teachers, semiconductor industry workers, and night-shift workers), studies on breast cancer risk from electromagnetic field (EMF) exposure, and future directions for evaluating breast cancer risk in the workplace.New York State Department of Health and Department of Environmental Conservatio

    Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products?

    Get PDF
    Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens\u27 expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations

    Corneal Wound Healing in the Presence of Antifibrotic Antibody Targeting Collagen Fibrillogenesis: A Pilot Study

    Get PDF
    Highly organized collagen fibrils interlacing with proteoglycans form the crucial architecture of the cornea and facilitate its transparency. Corneal scarring from accidental injury, surgery, or infection alters this highly organized tissue, causing severe consequences, including blindness. There are no pharmacological or surgical methods to effectively and safely treat excessive corneal scarring. Thus, we tested the anticorneal scarring utility of a rationally designed anticollagen antibody (ACA) whose antifibrotic effects have already been demonstrated in nonocular models. Utilizing a rabbit model with an incisional corneal wound, we analyzed ACA’s effects on forming collagen and proteoglycan-rich extracellular matrices in scar neotissue. We used microscopic and spectroscopic techniques to quantify these components and measure crucial parameters characterizing the structure and organization of collagen fibrils. Moreover, we analyzed the spatial distribution of collagen and proteoglycans in normal and healing corneas. Our study demonstrated significant changes in the quality and quantity of the analyzed molecules synthesized in scar neotissue. It showed that these changes extend beyond incision margins. It also showed ACA’s positive impact on some crucial parameters defining proper cornea structure. This pilot study provides a stepping stone for future tests of therapeutic approaches that target corneal extracellular scar matrix assembly

    The impact of cholesterol deposits on the fibrillar architecture of the Achilles tendon in a rabbit model of hypercholesterolemia.

    Get PDF
    BACKGROUND: Increased tendon pain and tendon damage is a significant complication related to hyperlipidemia. Unlike the well-established pathogenesis associated with increased serum concentrations of total cholesterol, triglycerides, and low-density lipoprotein in atherosclerotic cardiovascular disease, the role of hyperlipidemia in promoting tendon damage remains controversial and requires mechanistic clarity. METHODS: In this study, we analyzed the consequences of hypercholesterolemia on the integrity of the collagen-based architecture of the Achilles tendon. The Achilles tendons from rabbits fed with normal-cholesterol (nCH) and high-cholesterol (hCH) diets were analyzed. We studied the morphology of tendons, distribution of lipids within their collagen-rich milieu, the relative amounts of fibrillar collagen I and collagen III, and selected biomechanical parameters of the tendons at the macroscale and the nanoscale. RESULTS: Histological assays of hCH tendons and tenosynovium demonstrated hypercellular areas with increased numbers of macrophages infiltrating the tendon structure as compared to the nCH tendons. While Oil Red staining revealed lipid-rich deposits in the hCH tendons, hybridization of tendon tissue with the collagen hybridizing peptide (CHP) demonstrated damage to the collagen fibers. Fourier-transform infrared (FTIR) spectra showed the presence of distinct peaks consistent with the presence of cholesterol ester. Additionally, the hCH tendons displayed regions of poor collagen content that overlapped with lipid-rich regions. The hCH tendons had a substantial fourfold increase in the collage III to collagen I ratio as compared to the nCH tendons. Tendons from the hCH rabbits showed poor biomechanical characteristics in comparison with control. The biomechanical changes were evident at the macrolevel and the nanolevel of tendon structure. CONCLUSIONS: Our findings support the hypothesis that hypercholesterolemia coincides with the weakening of the tendons. It is likely that the intimate contact between collagen fibrils and cholesterol deposits contributes to the weakening of the fibrillar structure of the tendons

    Fluorescent protein markers to tag collagenous proteins: The paradigm of procollagen VII

    Get PDF
    Fluorescent proteins are powerful markers allowing tracking expression, intracellular localization, and translocation of tagged proteins but their effects on the structure and assembly of complex extracellular matrix proteins has not been investigated. Here, we analyzed the utility of fluorescent proteins as markers for procollagen VII, a triple-helical protein critical for the integrity of dermal-epidermal junction. DNA constructs encoding a red fluorescent protein-tagged wild type mini-procollagen VII α chain and green fluorescent protein-tagged α chains harboring selected mutations were genetically engineered. These DNA constructs were co-expressed in HEK-293 cells and the assembly of heterogeneous triple-helical mini-procollagen VII molecules was analyzed. Immunoprecipitation and fluorescence resonance energy transfer assays demonstrated that the presence of different fluorescent protein markers at the C-termini of individual α chains neither altered formation of triple-helical molecules nor affected their secretion to the extracellular space. Our study provides a basis for employing fluorescent proteins as tags for complex structural proteins of extracellular matrix

    Reducing the effects of intracellular accumulation of thermolabile collagen II mutants by increasing their thermostability in cell culture conditions.

    Get PDF
    Mutations in collagen II are associated with spondyloepiphyseal dysplasia, a group of heritable diseases whose common features include aberrations of skeletal growth. The mechanisms through which mutations in collagen II affect the cartilaginous tissues are complex and include both intracellular and extracellular processes. One of those mechanisms involves cellular stress caused by excessive accumulation of misfolded collagen II mutants. We investigated whether stabilizing the structure of thermolabile R789C and R992C collagen II mutants would improve their secretion from cells, thereby reducing cellular stress and apoptosis. Employing glycerol and trimethylamine N-oxide (TMAO), chemicals that increase the thermostability of collagen triple helices, we demonstrated that those compounds function as chaperones and stabilize the R789C and R992C mutants, accelerate their secretion, and improve cell survival. Our study provides a scientific basis for considering misfolded triple helices of collagen mutants a target for reducing the deleterious effects caused by their excessive intracellular accumulation

    Scar Formation in the Presence of Mitomycin C and the Anti-fibrotic Antibody in a Rabbit Model of Glaucoma Microsurgery: A Pilot Study

    Get PDF
    Purpose: This study aimed to evaluate the utility of a rationally engineered antibody that directly blocks collagen fibrillogenesis to reduce scar tissue formation associated with subconjunctival glaucoma surgery. Material and methods: Fourteen eyes of 7 adult rabbits underwent glaucoma filtering surgery using XEN 45 Gel Stent. The rabbits’ eyes were divided randomly into three treatment groups: (i) treated with the antibody, (ii) treated with mitomycin C, and (iii) treated with the antibody and mitomycin C. Following surgeries, the intraocular pressure and bleb appearance were evaluated in vivo. The rabbits were sacrificed 8 weeks after the surgery, and their eyes were harvested and processed for tissue analysis. Subsequently, tissue samples were analyzed microscopically for fibrotic tissue and cellular markers of inflammation. Moreover, the collagen-rich fibrotic tissue formed around the stents was analyzed using quantitative histology and infrared spectroscopy. The outcomes of this study were analyzed using the ANOVA test. Results: This study demonstrated no significant differences in intraocular pressure, bleb appearance, or presence of complications such as bleb leak among the treatment groups. In contrast, we observed significant differences among the subpopulations of collagen fibrils formed within scar neo-tissue. Based on the spectroscopic analyses, we determined that the relative content of mature collagen cross-links in the antibody-treated group was significantly reduced compared to other groups. Conclusions: Direct blocking of collagen fibrillogenesis with the anti-collagen antibody offers potentially beneficial effects that may reduce the negative impact of the subconjunctival scarring associated with glaucoma filtering surgery
    • …
    corecore