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Abstract 

Fluorescent proteins are powerful markers allowing tracking expression, intracellular 

localization, and translocation of tagged proteins but their effects on the structure and assembly 

of complex extracellular matrix proteins has not been investigated. Here, we analyzed the utility 

of fluorescent proteins as markers for procollagen VII, a triple-helical protein critical for the 

integrity of dermal-epidermal junction. DNA constructs encoding a red fluorescent protein-

tagged wild type mini-procollagen VII α chain and green fluorescent protein-tagged α chains 

harboring selected mutations were genetically engineered. These DNA constructs were co-

expressed in HEK-293 cells and the assembly of heterogeneous triple-helical mini-procollagen 

VII molecules was analyzed. Immunoprecipitation and fluorescence resonance energy transfer 

assays demonstrated that the presence of different fluorescent protein markers at the C-termini of 

individual α chains neither altered formation of triple-helical molecules nor affected their 

secretion to the extracellular space. Our study provides a basis for employing fluorescent 

proteins as tags for complex structural proteins of extracellular matrix. 

 

 

Keywords: fluorescent proteins, collagen VII, collagen mutations, FRET, extracellular matrix. 
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Introduction 

 Fluorescent proteins derived from marine organisms have become a powerful tool for 

studies in a number of biological research areas (for review see [1; 2]). A classical application of 

such proteins is to use them as intracellular markers fused with proteins of interest. In addition to 

the native fluorescent proteins, their genetically modified versions were also engineered. These 

modified variants with optimized fluorescence characteristics and reduced ability to self-

aggregate allow determining the expression of the protein of interest, their subcellular 

localization and translocation, and enable detecting their interactions with other macromolecules 

[1; 2]. 

 One of the limits of fusing fluorescent proteins with proteins of interest is the concern 

that their presence could alter the folding of these tagged proteins, thereby inhibiting their natural 

functions. This concern is particularly relevant to proteins consisting of subunits whose assembly 

into functional oligomers could be altered by the presence of fluorescent tags. A number of 

structural proteins found in extracellular matrices of various connective tissues are characterized 

by the oligomeric structure. A group of such complex proteins includes various collagens, 

matrilins, laminins, and fibronectin, to name a few.  

 A common characteristic of different collagen types is that they are formed by 

intracellular co-assembly of three homotypic or heterotypic polypeptide subunits [3]. It has been 

demonstrated that such co-assembly is a complex process which depends on the precise 

alignment of individual chains through a mechanism controlled by site-specific interactions of 

particular domains [4; 5].  

 Because of the stringent requirement for alignment of individual collagen α chains, 

tagging them with bulky fluorescent proteins presents a potential problem. The presence of these 
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proteins at either terminus of collagen chains could not only alter the formation of the collagen 

triple helix, but also could prevent secretion of collagen-fluorescent protein chimeras from cells. 

In a number of collagen-related studies fluorescent proteins were employed as reporters for 

monitoring the activity of specific promoters that control the expression of collagen genes  but 

fluorescent proteins as tags for full-length collagen chains were not widely applied as yet [6; 7; 

8; 9; 10; 11]. In one study, a DNA construct encoding a pro-α1(I) chain fused with green 

fluorescent protein (GFP) was injected into the nuclei of cultured cells, and then the intracellular 

translocation of the pro-α1(I)-GFP chimeras was monitored [12]. These studies, however, did 

not determine whether such a fusion protein existed intracellularly as individual pro-α1(I) 

chains, had the potential to co-assemble in the homotypic fashion, or was able to co-assemble in 

the heterotypic fashion with endogenous pro-α1(I) and pro-α2(I) chains. In our previous studies 

we genetically engineered GFP-tagged procollagen II variants in which GFP was fused at the C-

terminus of the pro-α1(II) chains [13; 14; 15]. We demonstrated that the presence of GFP did not 

alter the assembly of individual pro-α1(II) chains into a thermostable triple-helical structure [13]. 

We also demonstrated that GFP-tagged procollagen II was secreted from cells and the GFP-

modified procollagen II C-propeptides were correctly processed by procollagen C-proteinase 

[14; 15].  

 Here, we investigated the utility of a system in which individual chains of recombinant 

procollagen VII that were tagged with either GFP or with monomeric red fluorescent protein 

(RFP) were co-expressed in the same cells. The rationale for creating such a system was to 

express heterogeneous mutant procollagen VII molecules consisting of wild type α chains and 

chains that harbor a single amino acid substitution in a way similar to the expression pattern seen 

in patients with dystrophic epidermolysis bullosa (DEB), a heritable blistering disease of skin 
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[16; 17]. Our biochemical and microscopic assays demonstrated that the presence of two 

different fluorescent proteins at the C-termini of the α chains does not prevent co-assembly of 

these chains into heterogeneous triple-helical molecules and does not alter the secretion of these 

GFP and RFP-tagged molecules into the extracellular space. Our study provides a basis for 

employing fluorescent proteins as tags for complex collagenous proteins of the extracellular 

matrix. 

 

Materials and methods 

 DNA constructs encoding GFP-tagged and RFP-tagged procollagen VII variants -- 

DNA constructs encoding mouse mini-procollagen VII α chains (mProVII) cloned into the 

pCDNA3.1 vector (Invitrogen Inc.) were originally engineered, as described [18; 19]. The DNA 

constructs included those encoding wild type mProVII α chains (WTmProVII) and constructs 

with mutations (MTmProVII) leading to G2575R, R2622Q or G2623C substitutions [18]. 

 Here, the construct for the WTmProVII chain was fused with a fragment of DNA that 

encodes the monomeric RFP, while the constructs for the MTmProVII chains were fused with a 

fragment of DNA that encodes GFP. In brief, to enable downstream cloning procedures, the 

unique Not I restriction site present at the 3’ end of the original mProVII constructs was changed 

to the Sal I site by employing the QuickChange Multi Site-Directed Mutagenesis Kit™ 

(Stratagene). The fidelity of these changed constructs was confirmed by DNA sequencing. 

Subsequently, the DNA constructs for the G2575R, R2622Q, and G2623C mutants were cloned 

into the Nhe I/Sal I site of the pAcGFP1-Hyg-N1 vector (Clontech Laboratories, Inc.).  

 The DNA construct for the WTmProVII was cloned into the Nhe I/Sal I site of the 

pDsRED-monomer-Hyg-N1 vector (Clontech Laboratories, Inc.). Next, the Nhe I/Not I fragment 
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of this construct that included a coding region for the mProVII-RFP chimera was cloned into the 

corresponding BamH I/Not I site of an entry vector (Invitrogen, Inc.). At this stage the construct 

for the WTmProVII-RFP chimera was flanked by recombination sequences attL1 and attL2. 

Finally, the DNA construct was cloned into the destination vector pLenti6/V5-Dest (Invitrogen 

Inc.) that includes cytomegalovirus promoter, blasticidin resistance gene, and recombination 

sequences attR1 and attR2. This cloning was achieved by employing lambda phage site-specific 

recombination (LR Clonase™, Invitrogen, Inc.). 

 HEK-293 cells expressing mProVII-GFP and mProVII-RFP variants -- To express 

heterogeneous WT/MTmProVII variants consisting of GFP-tagged mutant chains and RFP-

tagged WT chains, initially, the DNA constructs encoding GFP-tagged mutants were transfected 

into HEK-293 cells, as described [18; 19]. Subsequently, transfected cells were cultured in the 

presence of hygromycin added to the final concentration of 100 µg/ml. Hygromycin-resistant 

clones were individually collected and observed under an inverted fluorescence microscope 

(Eclipse TE 2000U; Nikon) equipped with appropriate optical filter sets. Subsequently, the 

hygromycin-resistant/GFP-positive cells were expanded in cell culture conditions and analyzed 

for production of MTmProVII-GFP chimeras according to described methods [18; 19]. 

 After selecting HEK-293 cells that express MTmProVII-GFP variants, these cells were 

co-transfected with the DNA construct for the WTmProVII-RFP. After transfection, these cells 

were cultured in the presence of 4 µg/ml blasticidin and 100 µg/ml hygromycin to select a 

subpopulation of double-transfected cells expressing both MTmProVII-GFP and WTmProVII-

RFP variants. Hygromycin/blasticidin-resistant clones were individually collected and observed 

under an inverted fluorescence microscope equipped with specific set of optical filters. The 

GFP/RFP-positive clones were selected and analyzed by Western blot for secretion of mProVII 
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chains tagged with GFP or RFP as described above. In these assays, in addition to the anti-mouse 

procollagen VII polyclonal antibodies and anti-GFP monoclonal antibody (Santa Cruz 

Biotechnology), the anti-RFP polyclonal antibodies (Clontech Laboratories, Inc.) were 

employed. In addition to cells co-expressing the mProVII-GFP and mProVII-RFP variants, cells 

expressing only one specific variant were also selected. 

 Immunoprecipitation assays of co-assembly of the mutant mProVII-GFP chains with 

WTmProVII-RFP chains into mProVII-GFP-RFP triple-helical molecules -- To analyze 

whether the MTmProVII-GFP chains co-assembled together with the WTmProVII-RFP chains to 

form heterogeneous WT/MTmProVII-RFP-GFP molecules, we employed immunoprecipitation 

assays. After reaching confluency, selected cells co-expressing GFP-tagged and RFP-tagged 

mProVII chains were cultured in serum-free media in the presence of 40 µg/ml of L-ascorbic 

acid phosphate magnesium salt, as described [18; 19]. Medium was collected every 24 h for 6 

days. Each day proteins secreted to the media were precipitated with ammonium sulfate added to 

the final concentration of 300 mg/ml, and then the precipitated proteins were collected by 

centrifugation. Subsequently, protein pellets collected over a 6-day period were combined, 

resuspended and dialyzed against Tris-HCl buffer, pH 7.4, that included 0.4 M NaCl, 25 mM 

EDTA, and 0.02% NaN3. Dialyzed proteins were concentrated by ultrafiltration on an YM-100 

membrane (Millipore).  

 To specifically detect WT/MTmProVII-RFP-GFP heterogeneous molecules protein 

samples were incubated with anti-GFP antibody in the presence of 1% bovine serum albumin 

(BSA; Sigma-Aldrich) and 0.05% Tween 20 for 1 h at room temperature. After that time, the 

samples were incubated for 1 h at room temperature with Protein-G conjugated to magnetic 

beads (New England Biolabs, Inc.). Unbound material was removed by washing the beads 



 9

extensively with a Tris-HCl buffer, pH 7.4, supplemented with 0.1 M NaCl and 0.05% Tween 

20. Pellets consisting of magnetic beads with mProVII variants bound via anti-GFP antibodies 

were boiled in the protein loading buffer. Subsequently, proteins were electrophoresed in 7.5% 

polyacrylamide gels followed by electroblotting to nitrocellulose membranes. Protein bands 

representing WTmProVII-RFP chains were detected with anti-RFP primary antibodies and 

secondary anti-rabbit IgG antibodies conjugated with horseradish peroxidase (Sigma-Aldrich). 

Control samples for immunoprecipitation assays included mixtures of the homogeneous 

MTmProVII-GFP and WTmProVII-RFP molecules, samples of WT/MTmProVII-RFP-GFP 

heterogeneous molecules to which the anti-GFP antibody was not added, and those containing 

only the anti-GFP antibody. 

 Fluorescence resonance energy transfer (FRET) microscopy assays of co-assembly of 

the MTmProVII-GFP chains with WTmProVII-RFP chains into WT/MTmProVII-RFP-GFP 

triple-helical molecules -- Co-assembly of the GFP and RFP-tagged chains was also investigated 

by assessing the proximity of the fluorescent tags in HEK-293 cells by microscopic 

measurements of FRET. Fixed cells were examined with the Leica TCS SPII scanning confocal 

microscope equipped with a 100x 1.4 HCX PL APO CS oil immersion objective (Leica 

Microsystems, Heidelberg, Germany). FRET assays employed here were based on the acceptor 

photobleaching method. According to the basis of this procedure, if two fluorophores, an 

acceptor (RFP) and a donor (GFP), are positioned in a close enough proximity for FRET to 

occur, then photobleaching of an acceptor should yield a significant increase in fluorescence of 

the donor. In our acceptor photobleaching protocol, a selected region of interest (ROI) of a cell 

was bleached in the RFP channel by scanning the selected ROI 40 times using the 568 nm argon 



 10

laser line at 100% intensity. Before and after the bleaching, GFP images were collected to assess 

changes in the donor fluorescence.  

 To calculate the FRET efficiencies (%) in the bleached areas (EF) of cells expressing 

mProVII-GFP-RFP variants, we used the formula EF = (Dpost-Dpre)x100 / Dpost, where Dpre is pre-

bleached pixel intensity and Dpost is post-bleached pixel intensity of the analyzed ROI. For 

comparison, we also performed calculations of the pseudo-FRET efficiencies (CF) in the non-

bleached regions of these cells. Moreover, to detect any possible pseudo-FRET in a FRET-

negative control, cells expressing only the MTmProVII-GFP were employed. In this case, FRET 

should not occur, because the acceptor fluorophore, RFP, is absent. For the bleaching step, cells 

were illuminated at selected sites by the 568 nm laser line at 100% of full laser power and then 

the EF and CF values for the bleached and non-bleached regions, respectively, were calculated as 

described above. Comparisons of efficiencies calculated for bleached regions and non-bleached 

regions were performed by an unpaired, two-tailed t test. In all tests the α level was set to 0.05. 

Statistical analyses were performed with GraphPad Prism version 5.0 (GraphPad Software Inc.). 

 

Results 

 GFP and RFP-tagged mProVII variants – MTmProVII variants harboring the G2575R, 

R2622Q or G2623C substitutions were co-expressed with WTmProVII in HEK-293 cells. To 

enable monitoring the co-expression of WT and mutant mProVII chains they were tagged with 

RFP and GFP, respectively (Fig. 1). Western blot assays of mProVII secreted from of 

hygromycin/blasticidin-resistant cells demonstrated that these cells secreted GFP-tagged and 

RFP-tagged mProVII variants (Fig. 1). Co-expression of these variants by transfected cells was 

further confirmed by fluorescence microscopy (Fig. 2). 
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 Immunoprecipitation assays of co-assembly of the GFP-tagged and RFP-tagged 

mProVII chains – Immunoprecipitation assays were employed to determine whether the RFP-

tagged WTmProVII chains co-assembled with the GFP-tagged MTmProVII chains into one 

triple-helical molecule. Detecting the WTmProVII-RFP chains in molecules secreted from HEK-

293 cells and immunoprecipitated with the anti-GFP antibody strongly indicates co-assembly of 

mProVII chains tagged with these fluorophores (Fig. 3). At the same time, the absence of the 

RFP-positive bands in the samples consisting of the mixture of WTmProVII-RFP and 

MTmProVII-GFP homotrimers indicates the absence of aggregation among these homotrimeric 

molecules (Fig. 3). 

 FRET assays of coassembly of the GFP-tagged and RFP-tagged mProVII chains -- In 

cells expressing only MTmProVII-GFP homotrimers, the mean value for the CF (-1.979 ± 9.019, 

n = 55) was lower than the mean value for the EF (-1.715 ± 7.698, n = 66), but this difference 

was not statistically significant (P = 0.8625). In contrast, in cells expressing both the GFP and 

RFP-tagged mProVII chains, the EF value (5.833 ± 3.359) calculated from 120 bleached regions 

was significantly higher than the CF value (0.2673 ± 4.620; P < 0.0001, Fig. 4).  

 

Discussion 

 Fluorescent proteins have become a powerful tool for cell biology research, and at 

present they are widely used to monitor the expression of proteins, to observe their intracellular 

translocation, and to measure intermolecular interactions in which these proteins participate. 

Although in the majority of applications fluorescent proteins do not interfere with natural 

functions of tagged proteins and fluorescent protein-mediated dimerization is quite rare, the 

possibility of such interference should always be considered. In particular, a fluorescent protein 
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tag could not only alter the proper folding of a protein of interest, but it could also cause tag-

mediated atypical aggregation of this protein (for review see [2]).  

 Here, we studied the utility of the experimental system in which heterogeneous mProVII 

variants were formed by co-assembly of α chains fused with RFP or GFP. Although the native 

procollagen VII is characterized by the presence of a relatively long triple-helical domain, 

studies by Chen et al. and our own research have demonstrated that mini-procollagen VII 

variants consisting of a truncated triple-helical domain flanked by intact NC1 and NC2 domains 

are thermostable, have correct structure, and are properly secreted from cells [18; 19; 20]. In our 

current studies the rationale for tagging the individual α chains with different fluorescent 

proteins was to facilitate selection of recombinant mProVII molecules that consist of WT and 

mutant chains harboring single amino acid substitutions found in patients with DEB [18]. An 

important aspect of such an experimental design was to determine if the presence of bulky 

fluorescent proteins at the C-termini of individual mProVII chains could interfere with their 

proper folding into triple-helical structure and their secretion into the extracellular space.  

 Although the precise mechanisms that control the assembly of individual nascent pro-

α1(VII) chains into a triple-helical structure are not known, certain observations suggest that, in 

addition to the collagenous domain, the NC1 and NC2 domains also play a critical role. In 

particular, the observation that the recombinant NC1 domain alone is able to assemble into 

trimers suggests that this domain may mediate recognition and assembly of individual pro-

α1(VII) chains [21; 22]. Furthermore, the notion that the NC2 propeptide could take part in the 

formation of procollagen VII molecules is supported by the observation that mutations in this 

domain frequently alter the folding process, thereby leading to increased intracellular 

accumulation of misfolded molecules [23].  
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 Here, employing immunoprecipitation and FRET assays, we demonstrated that the 

presence of GFP and RFP at the C-termini of mProVII chains neither alters their folding into 

homogeneous or heterogeneous triple-helical structures nor prevents their secretion into the 

extracellular space. While homogeneous co-assembly of GFP-tagged pro-α1(II) chains has been 

previously reported, the heterogeneous assembly of collagenous chains tagged with two different 

fluorescent proteins, as observed here, has not yet been described [13; 15]. In determining the 

triple-helical and heterogeneous character of the WT/MTmProVII-RFP-GFP molecules, we 

excluded the possibility that the positive immunoprecipitation and FRET results obtained with 

those molecules were a consequence of nonspecific aggregation of individual α chains tagged 

with GFP or RFP or of the clustering of homogeneous WTmProVII-RFP and MTmProVII-GFP 

triple-helical molecules. Specifically, the triple-helical character of the analyzed molecules was 

evident by the fact that they were efficiently secreted from cells. This notion is supported by the 

observation that mutations in procollagen VII that alter folding of nascent pro-α1(VII) chains 

cause intracellular retention of unfolded or misfolded molecules [23]. The absence of aggregates 

formed by the fluorescent protein-dependent clustering of homogeneous WTmProVII-RFP and 

MTmProVII-GFP triple-helical molecules was evident by the lack of RFP-positive signals in 

GFP-mediated immunoprecipitation in samples containing mixtures of both homotrimers. 

Moreover, a relatively low FRET efficiency observed in cells expressing differentially-labeled 

mProVII chains suggests that, in addition to the heterogeneous WT/MTmProVII-RFP-GFP 

molecules, the homogeneous WTmProVII-RFP and MTmProVII-GFP variants were also 

formed. Such a mixture of collagen molecules consisting of WT and mutant chains that assemble 

into triple-helices at different combinations is similar to the formation of collagen molecules in 

cells expressing mutant α chains in a heterozygous fashion [24]. These homogenous molecules, 
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however, did not form tightly-packed aggregates in which GFP and RFP would be close enough 

to cause FRET. 

 Our study demonstrates that tagging individual mProVII α chains with GFP or RFP does 

not alter their folding into complex homogeneous or heterogeneous triple-helical molecules. 

Moreover, the presence of bulky fluorescent proteins at the C-termini of mProVII molecules 

does not interfere with their secretion into the extracellular space. Based on the results presented 

here, we postulate that fluorescent proteins are suitable tags for collagenous proteins. The 

presented system for tagging collagen chains offers a number of advantages for studies on the 

cellular-level events in which collagenous proteins participate. In particular, the ability to co-

express differentially labeled collagen α chains enables monitoring their intracellular 

localization, translocation, and analysis of various interactions in which they participate not only 

in physiological but also in pathological processes occurring in connective tissues as a result of 

mutations in these proteins. 
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Figure Legends 

 

Figure 1 

Expression of GFP-tagged and RFP-tagged mProVII variants. Upper panel shows Western blot 

analysis of mProVII variants secreted from selected clones of HEK-293 cells co-transfected with 

RFP-tagged WT chains and GFP-tagged mutant chains. In each set of the upper panel, the 

mProVII chains from corresponding samples were detected with anti-NC1 specific antibodies, 

anti-RFP or anti-GFP-specific antibodies. Lower panel presents a schematic of mProVII variants. 

Symbols: G2575R, R2622Q, and G2623C; specific amino acid substitutions in mProVII chains, 

NC1, TH, and NC2; the N-terminal, triple-helical, and the C-terminal domains of mProVII 

molecules, respectively. GFP and RFP are depicted as green or red cylinders, respectively. 

 

Figure 2 

Fluorescent microscopy of fixed cells co-expressing the RFP-tagged WT and the GFP-tagged 

mutant mProVII chains. The upper and middle panels show intracellular distribution of GFP and 

RFP, respectively, while the bottom panel is an overlap of green, red and blue (4',6-diamidino-2-

phenylindole-stained nuclei) channels.  

 

Figure 3 

Immunoprecipitation of mProVII variants tagged with GFP and/or RFP. mProVII molecules 

were exposed to the anti-GFP antibodies. Subsequently, the mProVII-anti-GFP complexes were 

precipitated and analyzed by Western blot assays for the presence of RFP. Symbols: he-G2575R-

GFP/WT-RFP, he-G2622Q-GFP/WT-RFP, and he-G2623C-GFP/WT-RFP; heterogeneous 
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mProVII molecules consisting of RFP-tagged WT chains and GFP-tagged mutant chains, ho-

G2623C-GFP & ho-WT-RFP; a control sample that includes a mixture of the homogeneous 

G2623C mProVII mutant tagged with GFP and homogeneous WTmProVII tagged with RFP, +/- 

indicates the presence or the absence of the anti-GFP antibodies in the analyzed samples. The 

last lane contains the RFP-tagged homogeneous WTmProVII that serves as a positive marker for 

immuno-detection of RFP. 

 

Figure 4 

Representative images of a cell expressing GFP-tagged and RFP-tagged heterogeneous mProVII. 

The upper panels show images of a cell observed in the red channel while the bottom panels 

depict the same cell seen in the green channel. Dotted-line boxes indicate an area of a cell 

subjected to bleaching in the red channel. The relative increase of the green signal after 

bleaching (aB) in comparison to that before bleaching (bB) indicates occurrence of FRET. 
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