37 research outputs found

    Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study

    Get PDF
    Objective: The aim of this study was to test the hypothesis that youths with obesity, when removed from structured school activities and confined to their homes during the coronavirus disease 2019 pandemic, will display unfavorable trends in lifestyle behaviors. Methods: The sample included 41 children and adolescents with obesity participating in a longitudinal observational study located in Verona, Italy. Lifestyle information including diet, activity, and sleep behaviors was collected at baseline and 3 weeks into the national lockdown during which home confinement was mandatory. Changes in outcomes over the two study time points were evaluated for significance using paired t tests. Results: There were no changes in reported vegetable intake; fruit intake increased (P = 0.055) during the lockdown. By contrast, potato chip, red meat, and sugary drink intakes increased significantly during the lockdown (P value range, 0.005 to < 0.001). Time spent in sports activities decreased by 2.30 (SD 4.60) h/wk (P = 0.003), and sleep time increased by 0.65 (SD 1.29) h/d (P = 0.003). Screen time increased by 4.85 (SD 2.40) h/d (P < 0.001). Conclusions: Recognizing these adverse collateral effects of the coronavirus disease 2019 pandemic lockdown is critical in avoiding depreciation of weight control efforts among youths afflicted with excess adiposity. Depending on duration, these untoward lockdown effects may have a lasting impact on a child's or adolescent's adult adiposity level

    Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity: Longitudinal study update

    Get PDF
    Objective: A previous report from our group identified directionally unfavorable dietary and lifestyle behavior trends in longitudinally monitored children and adolescents with obesity early in the COVID-19 pandemic lockdown. The current study aimed at extending these previous observations in youths with obesity on the dietary and lifestyle behavioral consequences of the extended COVID-19 lockdown in Verona, Italy.Methods: The sample included 32 children and adolescents with obesity participating in the longitudinal OBELIX study. Diet and lifestyle information were collected pre-pandemic, 3 weeks into the national lockdown, and 9 months later when home confinement continued to be mandatory. Changes in outcomes over the study time points were evaluated for significance using repeated-measures ANOVA and post-hoc pairwise t-tests with Bonferroni corrections.Results: As previously reported, meals/day, fried potato intake, and red meat ingestion increased significantly (p < 0.001) during the initial lockdown. Sleep time and screen time increased and sports participation decreased significantly (p < 0.001) during the initial lockdown. These changes in health behaviors remained significantly different from baseline at the second lockdown assessment, with the exception sleep time returned to baseline levels.Conclusions: Unfavorable diet and lifestyle behavioral changes in response to the initial COVID-19 lockdown in children and adolescents with obesity have largely been sustained over the course of the pandemic. There is an urgent need to intervene on these behaviors to prevent further deleterious effects on long-term child health; access to weight management care is critically important for these children. In addition to intervening on these behaviors, our findings should help to inform ongoing lockdown policies

    The detector control unit of the fine guidance sensor instrument on-board the ARIEL mission: design status

    Get PDF
    ARIEL is an ESA mission whose scientific goal is to investigate exoplanetary atmospheres. The payload is composed by two instruments: AIRS (ARIEL IR Spectrometer) and FGS (Fine Guidance System). The FGS detection chain is composed by two HgCdTe detectors and by the cold Front End Electronics (SIDECAR), kept at cryogenic temperatures, interfacing with the F-DCU (FGS Detector Control Unit) boards that we will describe thoroughly in this paper. The F-DCU are situated in the warm side of the payload in a box called FCU (FGS Control Unit) and contribute to the FGS VIS/NIR imaging and NIR spectroscopy. The F-DCU performs several tasks: drives the detectors, processes science data and housekeeping telemetries, manages the commands exchange between the FGS/DPU (Data Processing Unit) and the SIDECARs and provides high quality voltages to the detectors. This paper reports the F-DCU status, describing its architecture, the operation and the activities, past and future necessary for its development

    The instrument control unit of the ARIEL payload: design evolution following the unit and payload subsystems SRR (system requirements review)

    Get PDF
    ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is a medium-class mission of the European Space Agency, part of the Cosmic Vision program, whose launch is foreseen by early 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminium, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)1 has the double purpose, as suggested by its name, of performing photometry (0.50-0.55 ”m) and low resolution spectrometry over three bands (from 0.8 to 1.95 ”m) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System) with a cadence of 10 Hz and contributing to reach a 0.02 arcsec pointing accuracy for bright targets. AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 ”m (with a spectral resolution R > 100) and between 3.9 and 7.8 ”m with a spectral resolution R > 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to AIRS (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit)

    ERIS: revitalising an adaptive optics instrument for the VLT

    Get PDF
    ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation for Astronomy VII

    Heat treatment procedure of the Aluminium 6061-T651 for the Ariel Telescope mirrors

    Get PDF
    The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA’s ”Cosmic Vision” program. Its launch is scheduled for 2029. The purpose of the mission is the study of exoplanetary atmospheres on a target of ∌ 1000 exoplanets. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 ”m and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, followed by a hyperbolic secondary, a parabolic collimating tertiary and a flat-folding mirror directing the output beam parallel to the optical bench; all in bare aluminium. The choice of bare aluminium for the realization of the mirrors is dictated by several factors: maximizing the heat exchange, reducing the costs of materials and technological advancement. To date, an aluminium mirror the size of Ariel’s primary has never been made. The greatest challenge is finding a heat treatment procedure that stabilizes the aluminium, particularly the Al6061T651 Laminated alloy. This paper describes the study and testing of the heat treatment procedure developed on aluminium samples of different sizes (from 50mm to 150mm diameter), on 0.7m diameter mirror, and discusses future steps

    FEA testing the pre-flight Ariel primary mirror

    Get PDF
    Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de LiĂšge in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1”m. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns

    Aluminum based large telescopes: the ARIEL mission case

    Get PDF
    Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 ”m, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary, a parabolic recollimating tertiary and a flat folding mirror. The Primary mirror is a very innovative device made of lightened aluminum. Aluminum mirrors for cryogenic instruments and for space application are already in use, but never before now it has been attempted the creation of such a large mirror made entirely of aluminum: this means that the production process must be completely revised and fine-tuned, finding new solutions, studying the thermal processes and paying a great care to the quality check. By the way, the advantages are many: thermal stabilization is simpler than with mirrors made of other materials based on glass or composite materials, the cost of the material is negligeable, the shape may be free and the possibility of making all parts of the telescope, from optical surfaces to the structural parts, of the same material guarantees a perfect alignment at whichever temperature. The results and expectations for the flight model are discussed in this paper

    The telescope assembly of the Ariel space mission: an updated overview

    Get PDF
    Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 ”m and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly
    corecore