1,398 research outputs found
Bloch wave propagation in two-dimensional photonic crystals: Influence of the polarization
Transverse Magnetic (TM) and Transverse Electric (TE) optical Bloch waves are the generic solutions of Maxwell's equations in two-dimensional photonic crystals (2D-PhCs). We present an intuitive description of these waves based on their Fourier decomposition into series of electromagnetic waves. The properties of these electromagnetic waves as well as their contribution to the global energy and group velocity of the global Bloch wave are discussed for each polarization. This description provides a simple and intuitive method to understand dispersion and group velocity effects in 2D-PhC
On the oxygen abundance in our Galaxy
The compilation of published spectra of Galactic HII regions with available diagnostic [OIII]4363 line has been carried out. Our list contains 71 individual measurements of 13 HII regions in the range of galactocentric distances from 6.6 to 14.8 kpc. The oxygen abundances in all the HII regions were recomputed in the same way, using the classic Te - method. The oxygen abundance at the solar galactocentric distance traced by those HII regions is in agreement with the oxygen abundance in the interstellar medium in the solar vicinity derived with high precision from the interstellar absorption lines towards stars. The derived radial oxygen abundance distribution was compared with that for HII regions from the Shaver et al. (1983) sample which is the basis of many models for the chemical evolution of our Galaxy. It was found that the original Shaver et al.'s oxygen abundances are overestimated by 0.2-0.3 dex. Oxygen abundances in HII regions from the Shaver et al. sample have been redetermined with the recently suggested P - method. The radial distribution of oxygen abundances from the Shaver et al. sample redetermined with the P - method is in agreement with our radial distribution of (O/H)_Te abundances
Les enjeux du remplacement des lampes à incandescence. Des lampes «économiques», mais quelle qualité d’éclairage?
Aujourd’hui les protocoles internationaux visant une réduction globale de la consommation d’énergie ont conduit à l’approbation de nouvelles législations qui, dans le domaine de l’éclairage, imposent le remplace- ment des lampes à incandescence par des lampes économiques. Si ces nouvelles sources permettent déjà de réaliser les économies d’énergie demandées, elles ne sont pas encore en mesure de garantir une qualité d’éclairage comparable à celle qui était fournie par les lampes classiques
Does exist a correlation between endometriosis and thrombophilic disorders? A pilot study
OBJECTIVE: At present, there is growing evidence of the existence of a genetic predisposition in both thrombophilic disorders and endometriosis. The aim of our study was to evaluate for the first time the prevalence of some thrombophilic disorders in patients with endometriosis. MATERIALS AND METHODS: We conducted a retrospective study on 138 patients with endometriosis and 278 healthy control women. All women were subjected to a blood examination testing for thrombophilic screening and the variables examinated were: hyperhomocysteinemia, factor V Leiden and factor II prothrombin G20210A mutations in heterozygosis and homozigosis. RESULTS: A significant reduced prevalence (p < 0.05) of factor V Leiden mutation in endometriosis patients was found, whereas no significant differences (p = NS) for factor II and hyperhomocysteinemia were observed. CONCLUSION: Our preliminary data do not show any association between thrombophilic condition and endometriosis. Before assuming hormonal therapies, a thrombophilic plasmatic screening seems to be unnecessary in patients affected by endometriosis
Strong enhancement of d-wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon
We study the hole binding energy and pairing correlations in the three-band
Hubbard model coupled to an apical oxygen phonon, by exact diagonalization and
constrained-path Monte Carlo simulations. In the physically relevant
charge-transfer regime, we find that the hole binding energy is strongly
enhanced by the electron-phonon interaction, which is due to a novel
potential-energy-driven pairing mechanism involving reduction of both
electronic potential energy and phonon related energy. The enhancement of hole
binding energy, in combination with a phonon-induced increase of quasiparticle
weight, leads to a dramatic enhancement of the long-range part of d-wave
pairing correlations. Our results indicate that the apical oxygen phonon plays
a significant role in the superconductivity of high- cuprates.Comment: 5 pages, 5 figure
The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices
The radial distributions of the Mg2 and Fe5270 Lick spectral indices have
been measured to large radial distances on the disks of NGC 4303 and NGC 4535
using an imaging technique based on interference filters. These data, added to
those of NGC 4321 previously published in Paper I of this series are used to
constraint chemical (multiphase) evolutionary models for these galaxies.
Because the integrated light of a stellar disk is a time average over the
history of the galaxy weighted by the star formation rate, these constraints
complement the information on chemical gradients provided by the study of HII
regions which, by themselves, can only provide the alpha-elements abundance
accumulate over the life of the galaxy. The agreement between the observations
and the model predictions shown here lends confidence to the models which are
then used to describe the time evolution of galaxy parameters such as star
formation rates, chemical gradients, and gradients in the mean age of the
stellar population.Comment: to be published in Astrophysical Journa
Testing the Relation Between the Local and Cosmic Star Formation Histories
Recently, there has been great progress toward observationally determining
the mean star formation history of the universe. When accurately known, the
cosmic star formation rate could provide much information about Galactic
evolution, if the Milky Way's star formation rate is representative of the
average cosmic star formation history. A simple hypothesis is that our local
star formation rate is proportional to the cosmic mean. In addition, to specify
a star formation history, one must also adopt an initial mass function (IMF);
typically it is assumed that the IMF is a smooth function which is constant in
time. We show how to test directly the compatibility of all these assumptions,
by making use of the local (solar neighborhood) star formation record encoded
in the present-day stellar mass function. Present data suggests that at least
one of the following is false: (1) the local IMF is constant in time; (2) the
local IMF is a smooth (unimodal) function; and/or (3) star formation in the
Galactic disk was representative of the cosmic mean. We briefly discuss how to
determine which of these assumptions fail, and improvements in observations
which will sharpen this test.Comment: 14 pages in LaTeX (uses aaspp4.sty). 5 postscript figures. To appear
in the Astrophysical Journa
AN INTERDISCIPLINARY APPROACH FOR THE SEISMIC VULNERABILITY ASSESSMENT OF HISTORICAL CENTRES IN MASONRY BUILDING AGGREGATES: APPLICATION TO THE CITY OF SCARPERIA, ITALY
Abstract. The seismic vulnerability of masonry building aggregates is very difficult to determine, since it is affected by many uncertainties. The most uncertain quantities concern the historical periodization of structural aggregates. Moreover, the studies made at the urban scale can hardly be thorough, and usually the knowledge achieved on the single units is not fully satisfactory, so that the structural designer has to deal with uncompleted architectonical surveys and partial data; one of the most important problems concerns the lack of knowledge about the boundary conditions between adjacent structures. In order to perform mechanical analyses, an extensive knowledge of materials and techniques adopted is required. In this paper, an integrated methodology for the seismic assessment of building aggregate is presented. It concerns a multidisciplinary knowledge-based approach calibrated over the historical centres and the urban aggregates; the procedure joins different aspects, such as the use of modern technologies for an integrated knowledge, plans reconstructions through archival documents, laser scanner digital survey of urban fronts, non-destructive investigations of the materials. GIS and BIM platforms have been used to implement and collect data in order to perform detailed analyses. The information allowed to assess the seismic vulnerability of the building aggregates and the expected damage scenarios through empirical methodologies. The city of Scarperia, founded a few kilometres from Florence during the Medieval Age and characterized by a medium seismicity, has been chosen as a case study for the presented procedure
Galactic chemical evolution of heavy elements: from Barium to Europium
We follow the chemical evolution of the Galaxy for elements from Ba to Eu,
using an evolutionary model suitable to reproduce a large set of Galactic
(local and non local) and extragalactic constraints. Input stellar yields for
neutron-rich nuclei have been separated into their s-process and r-process
components. The production of s-process elements in thermally pulsing
asymptotic giant branch stars of low mass proceeds from the combined operation
of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases
neutrons in radiative conditions during the interpulse phase, and the reaction
22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The
resulting s-process distribution is strongly dependent on the stellar
metallicity. For the standard model discussed in this paper, it shows a sharp
production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process
yields, we assume that the production of r-nuclei is a primary process
occurring in stars near the lowest mass limit for Type II supernova
progenitors. The r-contribution to each nucleus is computed as the difference
between its solar abundance and its s-contribution given by the Galactic
chemical evolution model at the epoch of the solar system formation. We compare
our results with spectroscopic abundances of elements from Ba to Eu at various
metallicities (mainly from F and G stars) showing that the observed trends can
be understood in the light of the present knowledge of neutron capture
nucleosynthesis. Finally, we discuss a number of emerging features that deserve
further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap
- …