260 research outputs found
The RFOFO Ionization Cooling Ring for Muons
Practical ionization cooling rings could lead to lower cost or improved
performance in neutrino factory or muon collider designs. The ring modeled here
uses realistic three-dimensional fields. The performance of the ring compares
favorably with the linear cooling channel used in the second US Neutrino
Factory Study. The normalized 6D emittance of an ideal ring is decreased by a
factor of approximately 240, compared with a factor of only 15 for the linear
channel. We also examine such \textit{real-world} effects as windows on the
absorbers and rf cavities and leaving empty lattice cells for injection and
extraction. For realistic conditions the ring decreases the normalized 6D
emittance by a factor of 49.Comment: 27 pages, 18 figures and 5 tables. Submitted to Phys. Rev. ST-A
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
Ab Initio Liquid Hydrogen Muon Cooling Simulations with ELMS in ICOOL
This paper presents new theoretical results on the passage of muons through
liquid hydrogen which have been confirmed in a recent experiment. These are
used to demonstrate that muon bunches may be compressed by ionisation cooling
more effectively than suggested by previous calculations.
Muon cooling depends on the differential cross section for energy loss and
scattering of muons. We have calculated this cross section for liquid H2 from
first principles and atomic data, avoiding traditional assumptions. Thence, 2-D
probability maps of energy loss and scattering in mm-scale thicknesses are
derived by folding, and stored in a database. Large first-order correlations
between energy loss and scattering are found for H2, which are absent in other
simulations. This code is named ELMS, Energy Loss & Multiple Scattering. Single
particle trajectories may then be tracked by Monte Carlo sampling from this
database on a scale of 1 mm or less. This processor has been inserted into the
cooling code ICOOL. Significant improvements in 6-D muon cooling are predicted
compared with previous predictions based on GEANT. This is examined in various
geometries. The large correlation effect is found to have only a small effect
on cooling. The experimental scattering observed for liquid H2 in the MUSCAT
experiment has recently been reported to be in good agreement with the ELMS
prediction, but in poor agreement with GEANT simulation.Comment: 6 pages, 3 figure
Recommended from our members
Tapered Six-Dimensional Cooling Channel for a Muon Collider
A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of {approx} 10{sup 6}. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance. A complete scheme for cooling a muon beam sufficiently for use in a muon collider has been previously described. This scheme uses separate 6D ionization cooling channels for the two signs of the particle charge. In each, a channel first reduces the emittance of a train of muon bunches until they can be injected into a bunch-merging system. The single muon bunches, one of each sign, are then sent through a second tapered 6D cooling channel where the transverse emittance is reduced as much as possible and the longitudinal emittance is cooled to a value below that needed for the collider. The beam can then be recombined and sent through a final cooling channel using high-field solenoids that cools the transverse emittance to the required values for the collider while allowing the longitudinal emittance to grow. This paper mainly describes the design of the 6D cooling channel before bunch merging. Cooling efficiency is conveniently measured using a parameter Q, which is defined as the rate of change of 6D emittance divided by the rate of change of the number of muons in the beam. In a given lattice Q starts off small due to losses from initial matching, then rises to a large value (Q {approx} 15 is typical for the channels discussed here), and finally falls as the emittance of the beam approaches its equilibrium value. The idea for the 6D cooling channel described here originated with the RFOFO cooling ring. This design evolved into a helical channel referred to as a 'Guggenheim' in order to avoid serious problems with injection of large emittance beams. We found that good cooling efficiency requires that the channel be tapered. In that case when Q starts to fall off the lattice is modified to reduce the beta function. This ensures that the beam emittance is always large compared with the equilibrium emittance
Recommended from our members
Six Dimensional Bunch Merging for Muon Collider Cooling
A muon collider requires single, intense, muon bunches with small emittances in all six dimensions. It is most efficient to initally phase-rotate the muons into many separate bunches, cool these bunches in six dimensions (6D), and, when cool enough, merge them into single bunches (one of each sign). Previous studies only merged in longitudinal phase space (2D). In this paper we describe merging in all six dimensions (6D). The scheme uses rf for longitudinal merging, and kickers and transports with differing lengths (trombones) for transverse merging. Preliminary simulations, including incorporation in 6D cooling, is described. Muons are efficiently generated by pion decay, but they then have very large emittances. A muon collider requires low emittances, which can be achieved using transverse ionization cooling, combined with emittance exchange using dispersion and shaped absorbers. For efficient capture, muons are first phase-rotated by rf into a train of many bunches. But for high luminosity, we need just one bunch of each sign, so after some initial cooling, these bunches should be merged
A Cost-Effective Design for a Neutrino Factory
There have been active efforts in the U.S., Europe, and Japan on the design
of a Neutrino Factory. This type of facility produces intense beams of
neutrinos from the decay of muons in a high energy storage ring. In the U.S., a
second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in
2001. Since that report was published, new ideas in bunching, cooling and
acceleration of muon beams have been developed. We have incorporated these
ideas into a new facility design, which we designate as Study 2B (ST2B), that
should lead to significant cost savings over the FS2 design.Comment: 46 pages, 38 figures; to be submitted to Physical Review Special
Topics: Accelerators and Beam
Paramaterizations of inclusive cross sections for pion production in proton-proton collisions. II. Comparison to new data
A set of new, precise data have recently been made available by the NA49
collaboration for charged pion production in proton-proton and proton-Carbon
reactions at 158 GeV. The current paper compares this new data to five
currently available arithmetic parameterizations. Although a precise fit is not
expected, two of the parameterizations do not work very well but the other
three are able to provide a moderately good, but not precise fit to the
proton-proton data. The best two of these three parameterizations are scaled to
the proton-Carbon data and again provide a moderately good, but not precise
fit.Comment: 11 pages, 13 figures, Accepted for publication in Physical Review
The scattering of muons in low Z materials
This paper presents the measurement of the scattering of 172 MeV/c muons in
assorted materials, including liquid hydrogen, motivated by the need to
understand ionisation cooling for muon acceleration.
Data are compared with predictions from the Geant 4 simulation code and this
simulation is used to deconvolute detector effects. The scattering
distributions obtained are compared with the Moliere theory of multiple
scattering and, in the case of liquid hydrogen, with ELMS. With the exception
of ELMS, none of the models are found to provide a good description of the
data. The results suggest that ionisation cooling will work better than would
be predicted by Geant 4.7.0p01.Comment: pdfeTeX V 3.141592-1.21a-2.2, 30 pages with 22 figure
- …