16 research outputs found

    From Crystalline Germanium–Silicon Axial Heterostructures to Silicon Nanowire–Nanotubes

    No full text
    One-dimensional (1D) nanostructures have attracted considerable attention as a result of their exceptional properties and potential applications. Among them, 1D axial heterostructures with well-defined and controlled heterojunctions between different nanomaterials or between different 1D nanostructures (i.e., nanowire–nanotube heterojunctions) have recently become of particular interest as potential building blocks in future high-performance nano-optoelectronic and nanoelectronic devices. Here, we report on the preparation and characterization of crystalline silicon nanowire–nanotube (SiNW-NT) heterostructures with controlled geometry, kinked and unkinked, and composition using germanium–silicon nanowire heterostructures with abrupt heterojunctions (∼2 nm wide) as a template via the VLS-CVD mechanism

    Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Unprocessed Biosamples

    No full text
    The detection of biomolecules is critical for a wide spectrum of applications in life sciences and medical diagnosis. Nonetheless, biosamples are highly complex solutions, which contain an enormous variety of biomolecules, cells, and chemical species. Consequently, the intrinsic chemical complexity of biosamples results in a significant analytical background noise and poses an immense challenge to any analytical measurement, especially when applied without prior efficient separation and purification steps. Here, we demonstrate the application of antigen-dissociation regime, from antibody-modified Si-nanowire sensors, as a simple and effective direct sensing mechanism of biomarkers of interest in complex biosamples, such as serum and untreated blood, which does not require ex situ time-consuming biosample manipulation steps, such as centrifugation, filtering, preconcentration, and desalting, thus overcoming the detrimental Debye screening limitation of nanowire-based biosensors. We found that two key parameters control the capability to perform quantitative biomarkers analysis in biosamples: (i) the affinity strength (<i>k</i><sub>off</sub> rate) of the antibody–antigen recognition pair, which dictates the time length of the high-affinity slow dissociation subregime, and (ii) the “flow rate” applied during the solution exchange dissociation step, which controls the time width of the low-affinity fast-dissociation subregime. Undoubtedly, this is the simplest and most convenient approach for the SiNW FET-based detection of antigens in complex untreated biosamples. The lack of ex situ biosample manipulation time-consuming processes enhances the portability of the sensing platform and reduces to minimum the required volume of tested sample, as it allows the direct detection of untreated biosamples (5–10 μL blood or serum), while readily reducing the detection cycle duration to less than 5 min, factors of great importance in near-future point-of-care medical applications. We believe this is the first ever reported demonstration on the real-time, direct label-free sensing of biomarkers from untreated blood samples, using SiNW-based FET devices, while not compromising the ultrasensitive sensing capabilities inherent to these devices

    Nanodicing Single Crystalline Silicon Nanowire Arrays

    No full text
    Here, we demonstrate a novel method for the production of single-crystal Si nanowire arrays based on the top-down carving of Si-nanowall structures from a donor substrate, and their subsequent controlled and selective harvesting into a sacrificial solid material block. Nanosectioning of the nanostructures-embedding block by ultramicrotome leads to the formation of size, shape, and orientation-controlled high quality nanowire arrays. Additionally, we introduce a novel approach that enables transferring the nanowire arrays to any acceptor substrate, while preserving their orientation, and placing them on defined locations. Furthermore, crystallographic analysis and electrical measurements were performed, proving that the quality of the sectioned nanowires, which derive from their original crystalline donor substrate, are remarkably preserved

    Controlled Formation of Radial Core–Shell Si/Metal Silicide Crystalline Heterostructures

    No full text
    The highly controlled formation of “radial” silicon/NiSi  core−shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the “radial” diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200–400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide–shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core–shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide “radial” diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5–100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core–shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination

    Controlled Formation of Radial Core–Shell Si/Metal Silicide Crystalline Heterostructures

    No full text
    The highly controlled formation of “radial” silicon/NiSi  core−shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the “radial” diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200–400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide–shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core–shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide “radial” diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5–100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core–shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination

    Probing the Interactions of Intrinsically Disordered Proteins Using Nanoparticle Tags

    No full text
    The structural plasticity of intrinsically disordered proteins serves as a rich area for scientific inquiry. Such proteins lack a fix three-dimensional structure but can interact with multiple partners through numerous weak bonds. Nevertheless, this intrinsic plasticity possesses a challenging hurdle in their characterization. We underpin the intermolecular interactions between intrinsically disordered neurofilaments in various hydrated conditions, using grafted gold nanoparticle (NP) tags. Beyond its biological significance, this approach can be applied to modify the surface interaction of NPs for the creation of future tunable “smart” hybrid biomaterials

    Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations

    No full text
    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the “monitoring” of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously “control” and “monitor” chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen–antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth

    Optically-Gated Self-Calibrating Nanosensors: Monitoring pH and Metabolic Activity of Living Cells

    No full text
    Quantitative detection of biological and chemical species is critical to numerous areas of medical and life sciences. In this context, information regarding pH is of central importance in multiple areas, from chemical analysis, through biomedical basic studies and medicine, to industry. Therefore, a continuous interest exists in developing new, rapid, miniature, biocompatible and highly sensitive pH sensors for minute fluid volumes. Here, we present a new paradigm in the development of optoelectrical sensing nanodevices with built-in self-calibrating capabilities. The proposed electrical devices, modified with a photoactive switchable molecular recognition layer, can be optically switched between two chemically different states, each having different chemical binding constants and as a consequence affecting the device surface potential at different extents, thus allowing the ratiometric internal calibration of the sensing event. At each point in time, the ratio of the electrical signals measured in the ground and excited states, respectively, allows for the absolute concentration measurement of the molecular species under interest, without the need for electrical calibration of individual devices. Furthermore, we applied these devices for the real-time monitoring of cellular metabolic activity, extra- and intracellularly, as a potential future tool for the performance of basic cell biology studies and high-throughput personalized medicine-oriented research, involving single cells and tissues. This new concept can be readily expanded to the sensing of additional chemical and biological species by the use of additional photoactive switchable receptors. Moreover, this newly demonstrated coupling between surface-confined photoactive molecular species and nanosensing devices could be utilized in the near future in the development of devices of higher complexity for both the simultaneous control and monitoring of chemical and biological processes with nanoscale resolution control

    Si Nanowires Forest-Based On-Chip Biomolecular Filtering, Separation and Preconcentration Devices: Nanowires Do it All

    No full text
    The development of efficient biomolecular separation and purification techniques is of critical importance in modern genomics, proteomics, and biosensing areas, primarily due to the fact that most biosamples are mixtures of high diversity and complexity. Most of existent techniques lack the capability to rapidly and selectively separate and concentrate specific target proteins from a complex biosample, and are difficult to integrate with lab-on-a-chip sensing devices. Here, we demonstrate the development of an on-chip all-SiNW filtering, selective separation, desalting, and preconcentration platform for the direct analysis of whole blood and other complex biosamples. The separation of required protein analytes from raw biosamples is first performed using a antibody-modified roughness-controlled SiNWs (silicon nanowires) forest of ultralarge binding surface area, followed by the release of target proteins in a controlled liquid media, and their subsequent detection by supersensitive SiNW-based FETs arrays fabricated on the same chip platform. Importantly, this is the first demonstration of an <i>all-NWs device</i> for the whole direct analysis of blood samples on a single chip, able to selectively collect and separate specific low abundant proteins, while easily removing unwanted blood components (proteins, cells) and achieving desalting effects, without the requirement of time-consuming centrifugation steps, the use of desalting or affinity columns. Futhermore, we have demonstrated the use of our nanowire forest-based separation device, integrated in a single platform with downstream SiNW-based sensors arrays, for the real-time ultrasensitive detection of protein biomarkers directly from blood samples. The whole ultrasensitive protein label-free analysis process can be practically performed in less than 10 min
    corecore