6 research outputs found

    Handling of lipemic samples in the clinical laboratory

    Full text link
    Interferences in the clinical laboratory may lead physicians misinterpret results for some biological analytes. The most common analytical interferences in the clinical laboratory include hemolysis, icterus and lipemia. Lipemia is defined as turbidity in a sample caused by the accumulation of lipoproteins, mainly very-low density lipoproteins (VLDL) and chylomicrons. Several methods are available for the detection of lipemic samples, including the lipemic index, or triglyceride quantification in serum or plasma samples, or mean corpuscular hemoglobin (MCHC) concentration in blood samples. According to the European Directive 98/79/CE, it is the responsibility of clinical laboratories to monitor the presence of interfering substances that may affect the measurement of an analyte. There is an urgent need to standardize interference studies and the way interferences are reported by manufacturers. Several methods are currently available to remove interference from lipemia and enable accurate measurement of biological quantities. The clinical laboratory should establish a protocol for the handling of lipemic samples according to the biological quantity to be tested

    Manejo de muestras lipémicas en el Laboratorio Clínico

    Full text link
    Las interferencias analíticas en el laboratorio clínico pueden causar errores en la interpretación de los resultados de diversas magnitudes biológicas por parte del médico peticionario. Las interferencias analíticas más frecuentemente observadas en el laboratorio clínico son la hemólisis, ictericia y lipemia. La lipemia se define como la turbidez de la muestra causada por la acumulación de lipoproteínas, principalmente lipoproteínas de muy baja densidad (VLDL) y quilomicrones. Existen diversos métodos de detección de muestras lipémicas, como por ejemplo, el índice lipémico o la determinación de triglicéridos en muestras de suero o plasma o la Concentración de Hemoglobina Corpuscular Media (CHCM) en muestras de sangre. Las empresas de diagnóstico in vitro son las responsables, según la Directiva Europea 98/79/CE, de realizar el estudio de las sustancias interferentes que pueden afectar a la medición de una magnitud. Existe una necesidad urgente de estandarizar la forma

    Association of hyperuricemia and gamma glutamyl transferase as a marker of metabolic risk in alcohol use disorder

    Get PDF
    Excessive alcohol consumption leads to overproduction of urates and renal function plays a critical role in serum uric acid levels. We aimed to assess associations of hyperuricemia in patients with alcohol use disorder (AUD) and comparable Glomerular Filtration Rate (GFR). A total of 686 patients undergoing treatment for AUD between 2013 and 2017 were eligible (77% men); age at admission was 47 years [interquartile range (IQR), 40-53 years], age of onset of alcohol consumption was 16 years [IQR, 16-18 years] and the amount of alcohol consumed was 160 g/day [IQR, 120-240 g/day]. Body Mass Index was 24.7 kg/m(2) [IQR, 21.9-28.4 kg/m(2)], eGFR was 105 mL/min/1.73 m(2) [IQR, 95.7-113.0 mL], 9.7% had metabolic syndrome and 23% had advanced liver fibrosis (FIB-4>3.25). Prevalence of hyperuricemia was 12.5%. The eGFR-adjusted multivariate analysis showed that relative to patients with GGT 300 U/L were 4.31 (95% CI 1.62-11.46) and 10.3 (95% CI 3.50-29.90) times more likely to have hyperuricemia, respectively. Our data shows that hyperuricemia in the context of AUD is strongly associated with serum GGT levels and suggest an increased cardio-metabolic risk in this population

    Author Correction : Association of hyperuricemia and gamma glutamyl transferase as a marker of metabolic risk in alcohol use disorder

    Get PDF
    Excessive alcohol consumption leads to overproduction of urates and renal function plays a critical role in serum uric acid levels. We aimed to assess associations of hyperuricemia in patients with alcohol use disorder (AUD) and comparable Glomerular Filtration Rate (GFR). A total of 686 patients undergoing treatment for AUD between 2013 and 2017 were eligible (77% men); age at admission was 47 years [interquartile range (IQR), 40-53 years], age of onset of alcohol consumption was 16 years [IQR, 16-18 years] and the amount of alcohol consumed was 160 g/day [IQR, 120-240 g/day]. Body Mass Index was 24.7 kg/m2 [IQR, 21.9-28.4 kg/m2], eGFR was 105 mL/min/1.73 m2 [IQR, 95.7-113.0 mL], 9.7% had metabolic syndrome and 23% had advanced liver fibrosis (FIB-4 > 3.25). Prevalence of hyperuricemia was 12.5%. The eGFR-adjusted multivariate analysis showed that relative to patients with GGT ≤ 50, those with GGT between 51 and 300 U/L and those with GGT > 300 U/L were 4.31 (95% CI 1.62-11.46) and 10.3 (95% CI 3.50-29.90) times more likely to have hyperuricemia, respectively. Our data shows that hyperuricemia in the context of AUD is strongly associated with serum GGT levels and suggest an increased cardio-metabolic risk in this population

    Manejo de muestras lipémicas en el Laboratorio Clínico

    No full text
    Las interferencias analíticas en el laboratorio clínico pueden causar errores en la interpretación de los resultados de diversas magnitudes biológicas por parte del médico peticionario. Las interferencias analíticas más frecuentemente observadas en el laboratorio clínico son la hemólisis, ictericia y lipemia. La lipemia se define como la turbidez de la muestra causada por la acumulación de lipoproteínas, principalmente lipoproteínas de muy baja densidad (VLDL) y quilomicrones. Existen diversos métodos de detección de muestras lipémicas, como por ejemplo, el índice lipémico o la determinación de triglicéridos en muestras de suero o plasma o la Concentración de Hemoglobina Corpuscular Media (CHCM) en muestras de sangre. Las empresas de diagnóstico in vitro son las responsables, según la Directiva Europea 98/79/CE, de realizar el estudio de las sustancias interferentes que pueden afectar a la medición de una magnitud. Existe una necesidad urgente de estandarizar la forma en que se realizan y se reportan los estudios de interferencia por parte de los fabricantes. La interferencia por lipemia puede ser eliminada por diferentes métodos permitiendo la determinación de magnitudes biológicas de manera exacta. El laboratorio clínico debe decidir los protocolos de actuación ante muestras lipémicas dependiendo de la magnitud biológica que se quiere analizar

    Handling of lipemic samples in the clinical laboratory

    No full text
    Interferences in the clinical laboratory may lead physicians misinterpret results for some biological analytes. The most common analytical interferences in the clinical laboratory include hemolysis, icterus and lipemia. Lipemia is defined as turbidity in a sample caused by the accumulation of lipoproteins, mainly very-low density lipoproteins (VLDL) and chylomicrons. Several methods are available for the detection of lipemic samples, including the lipemic index, or triglyceride quantification in serum or plasma samples, or mean corpuscular hemoglobin (MCHC) concentration in blood samples. According to the European Directive 98/79/CE, it is the responsibility of clinical laboratories to monitor the presence of interfering substances that may affect the measurement of an analyte. There is an urgent need to standardize interference studies and the way interferences are reported by manufacturers. Several methods are currently available to remove interference from lipemia and enable accurate measurement of biological quantities. The clinical laboratory should establish a protocol for the handling of lipemic samples according to the biological quantity to be tested
    corecore