17 research outputs found

    Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization

    Get PDF
    A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund's adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system

    The Composition of Hyperacute Serum and Platelet-Rich Plasma Is Markedly Different despite the Similar Production Method

    Get PDF
    Autologous blood derived products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are widely applied in regenerative therapies, in contrast to the drawbacks in their application, mainly deriving from the preparation methods used. Eliminating the disadvantages of both PRP and PRF, hyperacute serum (HAS) opens a new path in autologous serum therapy showing similar or even improved regenerative potential at the same time. Despite the frequent experimental and clinical use of PRP and HAS, their protein composition has not been examined thoroughly yet. Thus, we investigated and compared the composition of HAS, serum, PRP and plasma products using citrate and EDTA by simple laboratory tests, and we compared the composition of HAS, serum, EDTA PRP and plasma by Proteome Profiler and ELISA assays. According to our results the natural ionic balance was upset in both EDTA and citrate PRP as well as in plasma. EDTA PRP contained significantly higher level of growth factors and cytokines, especially platelet derived angiogenic and inflammatory proteins, that can be explained by the significantly higher number of platelets in EDTA PRP. The composition analysis of blood derivatives revealed that although the preparation method of PRP and HAS were similar, the ionic and protein composition of HAS could be advantageous for cell function

    The potential of currently unavailable herpes virus vaccines

    No full text
    Introduction: Despite overwhelming experimental work, there are no licensed vaccines against the most frequent Alphaherpesviruses, namely herpes simplex virus 1 and 2 (HSV1 and 2) nor against the Epstein-Barr virus (EBV), a member of the subfamily Gammaherpesvirus. Areas covered: Since the DNAs of both HSVs reside in the regional sensory ganglia in a latent state (i.e. as circularized episomal molecules), a corresponding vaccine might be useful for immunotherapy rather than for prevention of primary infection. Here we describe the design of a purified subunit vaccine as well as the preparation and efficacy of a recombinant fusion protein consisting of the gD ectodomain from our domestic attenuated HSV1 strain HSZP. The EBV vaccines considered so far, were destined for prevention of infectious mononucleosis (IM) or to prevent formation of EBV related tumors. To design the EBV peptide vaccine, at least 15 carefully selected immunogenic epitopes coming from 12 virus coded proteins were bound to synthetic micro-particle carriers along with a non-specific pathogen recognizing receptor (PRR) stimulating both the T as well as B lymphocytes. Expert commentary: The efficacy of a novel EBV peptide in the rabbit model was based on criteria such as antibody formation (EA-D detected by ELISA, early and capsid proteins tested by immunoblot), presence of LMP1 antigen and of viral DNA in peripheral white blood cells. Out of 19 peptide combinations used for vaccination, at least 6 showed a satisfactory protective effect

    Epigenetic regulation

    No full text
    Some of the key epigenetic regulatory mechanisms appeared early during evolution, and the acquisition of novel epigenetic regulators apparently facilitated certain evolutionary transitions. In this short review we focus mainly on the major epigenetic mechanisms that control chromatin structure and accessibility in mammalian cells. The enzymes methylating CpG dinucleotides and those involved in the active demethylation of 5-metylcytosine (5mC) are outlined together with the members of the methyl binding protein (MBP) family that bind to and “interpret” the 5mC mark. The enzymes involved in reversible, covalent modifications of core histone proteins that affect chromatin structure are also described briefly. Proteins that build up Polycomb group (PcG) and Trithorax group (TrxG) protein complexes may also modify histones. By establishing heritable chromatin states, PcG and TrxG complexes contribute - similarly to cytosine methylation - to the transmission of cell type-specifi c gene expression patterns from cell generation to cell generation. Novel players involved in epigenetic regulation, including variant histones, pioneer transcription factors, long noncoding RNA molecules and the regulators of long-distance chromatin interactions are introduced as well, followed by the characterization of various chromatin types. © Springer International Publishing Switzerland 2016

    Epigenetic alterations in epstein-barr virus-associated diseases

    No full text
    Latent Epstein-Bar virus genomes undergo epigenetic modifi cations which are dependent on the respective tissue type and cellular phenotype. These defi ne distinct viral epigenotypes corresponding with latent viral gene expression profi les. Viral Latent Membrane Proteins 1 and 2A can induce cellular DNA methyltransferases, thereby infl uencing the methylation status of the viral and cellular genomes. Therefore, not only the viral genomes carry epigenetic modifi cations, but also the cellular genomes adopt major epigenetic alterations upon EBV infection. The distinct cellular epigenotypes of EBV-infected cells differ from the epigenotypes of their normal counterparts. In Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC) signify cant changes in the host cell methylome with a strong tendency towards CpG island hypermethylation are observed. Hypermethylated genes unique for EBVaGC suggest the existence of an EBV-specifi c “epigenetic signature”. Contrary to the primary malignancies carrying latent EBV genomes, lymphoblastoid cells (LCs) established by EBV infection of peripheral B cells in vitro are characterized by a massive genome-wide demethylation and a signifi cant decrease and redistribution of heterochromatic histone marks. Establishing complete epigenomes of the diverse EBV-associated malignancies shall clarify their similarities and differences and further clarify the contribution of EBV to the pathogenesis, especially for the epithelial malignancies, NPC and EBVaGC. © Springer International Publishing Switzerland 2016

    Epigenetic dysregulation in virus-associated neoplasms

    No full text
    The oncoproteins of human tumor viruses regularly interact with the cellular epigenetic machinery. Such interactions alter the epigenome of the host cell and reprogram its gene expression pattern. Altered levels or redistribution of (cytosine-5)-DNA methyltransferases and changes in the cellular methylome were observed in Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B virus (HBV), hepatitis D virus (HDV), hepatitis C virus (HCV), and human papillomavirus (HPV) associated neoplasms and cell lines. Methylation-mediated silencing of cellular promoters was also noted in Merkel cell polyomavirus (MCPyV) positive Merkel cell carcinomas, and, as discussed elsewhere, in EBV-associated malignancies and adenovirus-induced rodent tumors as well. Promoter activation also occurred, either associated with DNA hypomethylation or with the induction of euchromatic histone modifi cations by viral oncoproteins. It is worthy to notice that HCV infection induced large, hypomethylated blocks of cellular chromatin, although the exact molecular mechanism remains to be elucidated. In hepatoma cells expressing HBx, the oncoprotein encoded by the HBV genome, demethylation of the repetitive satellite 2 sequences was observed, due to downregulation of the de novo DNA methyltransferase DNMT3B. Tax and HBZ, the oncoproteins of human T-cell lymphotropic virus type I (HTLV-I), can both activate and silence distinct cellular promoters by interacting with cellular enzymes involved in histone modification. © Springer International Publishing Switzerland 2016

    Wild type HBx and truncated HBx: Pleiotropic regulators driving sequential genetic and epigenetic steps of hepatocarcinogenesis and progression of HBV-associated neoplasms

    Get PDF
    Hepatitis B virus (HBV) is one of the causative agents of hepatocellular carcinoma. The molecular mechanisms of tumorigenesis are complex. One of the host factors involved is apparently the long-lasting inflammatory reaction which accompanies chronic HBV infection. Although HBV lacks a typical viral oncogene, the HBx gene encoding a pleiotropic regulatory protein emerged as a major player in liver carcinogenesis. Here we review the tumorigenic functions of HBx with an emphasis on wild type and truncated HBx variants, and their role in the transcriptional dysregulation and epigenetic reprogramming of the host cell genome. We suggest that HBx acquired by the HBV genome during evolution acts like a cellular proto-onc gene that is activated by deletion during hepatocarcinogenesis. The resulting viral oncogene (v-onc gene) codes for a truncated HBx protein that facilitates tumor progression. Copyright (c) 2015 John Wiley & Sons, Ltd

    Effect of Simulated Transport Conditions on Microbiological Properties of Bottled Natural Mineral Water

    No full text
    Bottled mineral water is distributed globally through complex supply chains, making it available far beyond its bottling plants. In low-viscosity food matrices, invisible changes may occur due to shaking. The primary purpose of this research was to investigate the potential correlation between the intensity of mechanical agitation and the number of detectable microorganisms in bottled mineral water. The simulation of dynamic mechanical vibration was conducted using both time-accelerated and real-time tests. Freshly bottled natural mineral water and commercially available mineral water brands from different bottling locations and times were subjected to random vibration at three intensities as specified by the ASTM D-4169-16 standard, which simulates road transport on semi-trailer trucks. The study investigated the specific growth rate, the generation time, and the maximum cell numbers of microorganisms. The quantitative PCR (qPCR) technique was used to determine and compare the concentrations of microbes. Dynamic mechanical vibration affected the microbiome of mineral waters, influencing growth rates and generation times. In the case of waters from different bottling locations and times, the specific growth rate varied significantly for each water and for each intensity. This finding demonstrates that the microbiome composition of the water source and the interaction between microbes influence the response to mechanical impact. The time-accelerated test was shown to be suitable for analyzing the reaction of the microbiome of the tested matrix to the intensity and duration of vibration. The applied test protocol enabled the monitoring of changes in cell numbers by qPCR. All three intensities of the time-accelerated method were effective in testing the effects of real-time mechanical agitation on the microbiome

    The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells

    No full text
    Although the microRNA miR-146a is an important regulator of immunological processes and contributes to the pathogenesis of certain B cell lymphoma types, in B cells the epigenetic regulation of miR-146a expresion has not been studied yet. To elucidate the mechanisms controlling miR-146a expression in B lymphoid cells we analysed epigenetic marks, including CpG methylation and histone modifications, at the miR-146a promoter in well characterized Epstein-Barr virus (EBV) positive and EBV negative B cell lines. In addition, EBV positive epithelial cell lines were also studied as controls. In cells with a silent miR-146a promoter the 5' regulatory sequences comprising a CpG island were devoid of activating histone modifications, independently of the methylation pattern of the regulatory region. The regulatory sequences flanking the inactive miR-146 promoter were hypermethylated at CpG dinucleotides in the EBV positive Burkitt's lymphoma (BL) cell lines of memory B cell phenotype (Rael and Akata), partially methylated in the mammary carcinoma cell lines C2G6 and C4A3, and completely unmethylated in the nasopharyngeal carcinoma cell line C666-1. In contrast, in EBV positive cell lines of activated B cell phenotype, and EBV negative BL cell lines the invariably unmethylated 5' regulatory sequences of active miR-146a promoters were enriched in the euchromatic histone modification marks acetylated histone H3, acetylated histone H4, and histone H3 dimethylated at lysine 4. The euchromatic histone modification marks extended over the immediate vicinity of the transcriptional initiation site to the 3' intron, too. We concluded that similarly to the promoters of protein coding genes, both DNA methylation and histone modifications contribute to the host cell dependent expression of miR-146a. © 2013 Elsevier Inc
    corecore