22,396 research outputs found

    Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems

    Get PDF
    Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption−desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems

    Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Full text link
    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of black hole approach to the order of Planck scale, it stops radiating and leads to black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomenons imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at LHC, the results demonstrate that the black hole can not be produced in the recent LHC.Comment: 12 pages, 6 figure

    Exploring the quantum critical behaviour in a driven Tavis-Cummings circuit

    Full text link
    Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly-controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalise the critical spin-field coupling strength, we have observed a four-qubit non-equilibrium quantum phase transition in a dynamical manner, i.e., we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the non-equilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition related science, such as scaling behaviours, parity breaking and long-range quantum correlations.Comment: Main text with 3 figure

    Origin of the different conductive behavior in pentavalent-ion-doped anatase and rutile TiO2_2

    Full text link
    The electronic properties of pentavalent-ion (Nb5+^{5+}, Ta5+^{5+}, and I5+^{5+}) doped anatase and rutile TiO2_2 are studied using spin-polarized GGA+\emph{U} calculations. Our calculated results indicate that these two phases of TiO2_2 exhibit different conductive behavior upon doping. For doped anatase TiO2_2, some up-spin-polarized Ti 3\emph{d} states lie near the conduction band bottom and cross the Fermi level, showing an \emph{n}-type half-metallic character. For doped rutile TiO2_2, the Fermi level is pinned between two up-spin-polarized Ti 3\emph{d} gap states, showing an insulating character. These results can account well for the experimental different electronic transport properties in Nb (Ta)-doped anatase and rutile TiO2_2.Comment: 4 pages, 5 figure

    Experimental verification of a Jarzynski-related information-theoretic equality using a single trapped ion

    Full text link
    Most non-equilibrium processes in thermodynamics are quantified only by inequalities, however the Jarzynski relation presents a remarkably simple and general equality relating non-equilibrium quantities with the equilibrium free energy, and this equality holds in both classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in quantum regime using a single ultracold 40Ca+^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the non-equilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.Comment: 2 figure

    Zeeman Spectroscopy of the Star Algebra

    Get PDF
    We solve the problem of finding all eigenvalues and eigenvectors of the Neumann matrix of the matter sector of open bosonic string field theory, including the zero modes, and switching on a background B-field. We give the discrete eigenvalues as roots of transcendental equations, and we give analytical expressions for all the eigenvectors.Comment: (1, 25) pages, 2 Figure

    The Spectrum of the Neumann Matrix with Zero Modes

    Get PDF
    We calculate the spectrum of the matrix M' of Neumann coefficients of the Witten vertex, expressed in the oscillator basis including the zero-mode a_0. We find that in addition to the known continuous spectrum inside [-1/3,0) of the matrix M without the zero-modes, there is also an additional eigenvalue inside (0,1). For every eigenvalue, there is a pair of eigenvectors, a twist-even and a twist-odd. We give analytically these eigenvectors as well as the generating function for their components. Also, we have found an interesting critical parameter b_0 = 8 ln 2 on which the forms of the eigenvectors depend.Comment: 25+1 pages, 3 Figures; typos corrected and some comments adde
    corecore