36 research outputs found

    Unique phenotype in a patient with CHARGE syndrome

    Get PDF
    CHARGE is a phenotypically heterogeneous autosomal dominant disorder recognized as a cohesive syndrome since the identification of CHD7 as a genetic etiology. Classic features include: Coloboma, Heart defects, Atresia choanae, Retarded growth and development, Genitourinary abnormalities, and Ear anomalies and/or deafness. With greater accessibility to genetic analysis, a wider spectrum of features are emerging, and overlap with disorders such as DiGeorge syndrome, Kallmann syndrome, and Hypoparathyroidism Sensorineural Deafness and Renal Disease syndrome, is increasingly evident. We present a patient with a unique manifestation of CHARGE syndrome, including primary hypoparathyroidism and a limb anomaly; to our knowledge, he is also the first CHARGE subject reported with bilateral multicystic dysplastic kidneys. Furthermore, with structural modeling and murine expression studies, we characterize a putative CHD7 G744S missense mutation. Our report continues to expand the CHARGE phenotype and highlights that stringent fulfillment of conventional criteria should not strictly guide genetic analysis

    Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Get PDF
    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes

    Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans.

    No full text
    International audienceDefective function of the Sonic Hedgehog (SHH) signaling pathway is the most frequent alteration underlying holoprosencephaly (HPE) or its various clinical microforms. We performed an extensive mutational analysis of the entire human DISP1 gene, required for secretion of all hedgehog ligand(s) and which maps to the HPE 10 locus of human chromosome 1q41, as a HPE candidate gene. Here, we describe two independent families with truncating mutations in human DISP1 that resemble the cardinal craniofacial and neuro-developmental features of a recently described microdeletion syndrome that includes this gene; therefore, we suggest that DISP1 function contributes substantially to both of these signs in humans. While these clinical features are consistent with common HPE microforms, especially those linked to defective signaling by Sonic Hedgehog, we have insufficient evidence so far that functionally abnormal DISP1 alleles will commonly contribute to the more severe features of typical HPE

    Mutations in the human SIX3 gene in holoprosencephaly are loss of function

    No full text
    Holoprosencephaly (HPE) is the most common developmental anomaly of the human forebrain; however, the genetics of this heterogeneous and etiologically complex malformation is incompletely understood. Heterozygous mutations in SIX3, a transcription factor gene expressed in the anterior forebrain and eyes during early vertebrate development, have been frequently detected in human HPE cases. However, only a few mutations have been investigated with limited functional studies that would confirm a role in HPE pathogenesis. Here, we report the development of a set of robust and sensitive assays of human SIX3 function in zebrafish and apply these to the analysis of a total of 46 distinct mutations (19 previously published and 27 novel) located throughout the entire SIX3 gene. We can now confirm that 89% of these putative deleterious mutations are significant loss-of-function alleles. Since disease-associated single point mutations in the Groucho-binding eh1-like motif decreases the function in all assays, we can also confirm that this interaction is essential for human SIX3 co-repressor activity; we infer, in turn, that this function is important in HPE causation. We also unexpectedly detected truncated versions with partial function, yet missing a SIX3-encoded homeodomain. Our data indicate that SIX3 is a frequent target in the pathogenesis of HPE and demonstrate how this can inform the genetic counseling of families

    The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism.

    No full text
    International audienceMutations of the ZIC2 transcription factor gene are among the most common heterozygous variations detected in holoprosencephaly (HPE) patients, a patient group who lack critical midline forebrain specification due to defective embryonic signaling during development. Recent studies indicate that complete deficiency of the related murine Zic2 transcription factor can also be a contributing factor to variable midline deficiencies, presenting during mid-gastrulation, that could explain similar forebrain anomalies in this model system. Here we collect and summarize all available mutations in the human ZIC2 gene detected in HPE patients (21 published and 62 novel). Our analysis corroborates this mechanism proposed in mice by predicting loss-of-function as the likely pathogenetic mechanism common to most, if not all, of these mutations in HPE

    Reduced NODAL Signaling Strength via Mutation of Several Pathway Members Including FOXH1 Is Linked to Human Heart Defects and Holoprosencephaly

    No full text
    Abnormalities of embryonic patterning are hypothesized to underlie many common congenital malformations in humans including congenital heart defects (CHDs), left-right disturbances (L-R) or laterality, and holoprosencephaly (HPE). Studies in model organisms suggest that Nodal-like factors provide instructions for key aspects of body axis and germ layer patterning; however, the complex genetics of pathogenic gene variant(s) in humans are poorly understood. Here we report our studies of FOXH1, CFC1, and SMAD2 and summarize our mutational analysis of three additional components in the human NODAL-signaling pathway: NODAL, GDF1, and TDGF1. We identify functionally abnormal gene products throughout the pathway that are clearly associated with CHD, laterality, and HPE. Abnormal gene products are most commonly detected in patients within a narrow spectrum of isolated conotruncal heart defects (minimum 5%–10% of subjects), and far less commonly in isolated laterality or HPE patients (∼1% for each). The difference in the mutation incidence between these groups is highly significant. We show that apparent gene dosage discrepancies between humans and model organisms can be reconciled by considering a broader combination of sequence variants. Our studies confirm that (1) the genetic vulnerabilities inferred from model organisms with defects in Nodal signaling are indeed analogous to humans; (2) the molecular analysis of an entire signaling pathway is more complete and robust than that of individual genes and presages future studies by whole-genome analysis; and (3) a functional genomics approach is essential to fully appreciate the complex genetic interactions necessary to produce these effects in humans
    corecore