35 research outputs found
Genomic Imprinting and Epigenetic Control of Development
Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development
An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis
Germ cell development and gametogenesis require genome-wide transitions in epigenetic modifications and chromatin structure. These changes include covalent modifications to the DNA and histones as well as remodeling activities. Here, we explore the role of the mammalian SWI/SNF chromatin-remodeling complex during spermatogenesis using a conditional allele of the ATPase subunit, brahma-related gene 1 (Brg1, or Smarca4). Not only do BRG1 levels peak during the early stages of meiosis, genetic ablation of Brg1 in murine embryonic gonocytes results in arrest during prophase of meiosis I. Coincident with the timing of meiotic arrest, mutant spermatocytes accumulate unrepaired DNA and fail to complete synapsis. Furthermore, mutant spermatocytes show global alterations to histone modifications and chromatin structure indicative of a more heterochromatic genome. Together, these data demonstrate a requirement for BRG1 activity in spermatogenesis, and suggest a role for the mammalian SWI/SNF complex in programmed recombination and repair events that take place during meiosis
Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development
Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis
Key mediators of somatic ATR signaling localize to unpaired chromosomes in spermatocytes
Meiotic silencing of unpaired chromatin (MSUC) occurs during the first meiotic prophase, as chromosomes that fail to pair are sequestered into a transcriptionally repressive nuclear domain. This phenomenon is exemplified by the heterologous sex chromosomes of male mammals, where the ATR DNA damage response kinase is crucial for this silencing event. However, the mechanisms underlying the initiation of MSUC remain unknown. Here, we show that essential components of ATR signaling in murine somatic cells are spatially confined to unpaired chromosomes in spermatocytes, including the ATR-dependent phosphorylation of the single-stranded DNA (ssDNA)-binding complex replication protein A (RPA) and the checkpoint kinase CHK1. These observations support a model in which ssDNA plays a central role in the recruitment of ATR during MSUC, and provide a link to meiotic progression through activation of CHK1
Differentiation-Driven Nucleolar Association of the Mouse Imprinted Kcnq1 Locus
The organization of the genome within the mammalian nucleus is nonrandom, with physiologic processes often concentrated in specific three-dimensional domains. This organization may be functionally related to gene regulation and, as such, may play a role in normal development and human disease processes. However, the mechanisms that participate in nuclear organization are poorly understood. Here, we present data characterizing localization of the imprinted Kcnq1 alleles. We show that nucleolar association of the paternal allele (1) is stimulated during the differentiation of trophoblast stem cells, (ii) is dependent upon the Kcnq1ot1 noncoding RNA, (3) does not require polycomb repressive complex 2, and (4) is not sufficient to preclude transcription of imprinted genes. Although nucleolar positioning has been proposed as a mechanism to related to gene silencing, we find that silencing and perinucleolar localization through the Kcnq1ot1 noncoding RNA are separable events
Apoptotic Debris Accumulates on Hematopoietic Cells and Promotes Disease in Murine and Human Systemic Lupus Erythematosus
Apoptotic debris, autoantibody, and IgG-immune complexes (ICs) have long been implicated in the inflammation associated with systemic lupus erythematosus (SLE); however, it remains unclear whether they initiate immune-mediated events that promote disease. In this study, we show that peripheral blood mononuclear cells from SLE patients experiencing active disease, and hematopoietic cells from lupus-prone MRL/lpr and NZM2410 mice accumulate markedly elevated levels of surface-bound nuclear self-antigens. On dendritic cells (DCs) and macrophages (MFs), the self-antigens are part of IgG-ICs that promote FcγRI-mediated signal transduction. Accumulation of IgG-ICs is evident on ex vivo myeloid cells from MRL/lpr mice by 10 weeks of age, and steadily increases prior to lupus nephritis. IgG and FcγRI play a critical role in disease pathology. Passive transfer of pathogenic IgG into IgG-deficient MRL/lpr mice promotes the accumulation of IgG-ICs prior to significant B cell expansion, BAFF secretion, and lupus nephritis. In contrast, diminishing the burden IgG-ICs in MRL/lpr mice through deficiency in FcγRI markedly improves these lupus pathologies. Together, our findings reveal a previously unappreciated role for the cell surface accumulation of IgG-ICs in human and murine lupus
Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals
Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals
Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development
Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT
The Genetic Basis of Hepatosplenic T-cell Lymphoma
Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets
Transgenic RNAi reveals essential functions for CTCF in H19/IGF2 imprinting and preimplantation development
A small subset of mammalian genes are subject to imprinted regulation: these genes are expressed monoallelically, and in a parent-of-origin specific manner. The transcriptional states of these genes are determined during gametogenesis. Two of the best studied imprinted genes, H19 and Insulin-like growth factor 2 (Igf2) are closely-linked and reciprocally imprinted. The coordinate regulation of these genes has been shown to involve the binding of the vertebrate insulator protein, CTCF, to the maternally hypomethylated differentially methylated domain (DMD). However, the role CTCF has in maintaining the hypomethylated state of the DMD during oogenesis, a time when other methylation imprints are being established, is not yet understood. Using a transgenic-RNAi based approach to create oocytes with depleted levels of CTCF, we have examined the methylation state of the H19 DMD. Oocytes with a greater depletion of CTCF protein show acquisition of methylation specifically at the H19 DMD, suggesting that CTCF protects the H19 DMD from de novo methylation during oocyte growth. Furthermore, loss of CTCF protein causes maternal-effect lethality, in part due to arrest of embryos in early preimplantation stages. Together, our data show broad-ranging requirements for CTCF both in epigenetic gene regulation and in survival of the preimplantation embryo