174 research outputs found

    SCET sum rules for B->P and B->V transition form factors

    Get PDF
    We investigate sum rules for heavy-to-light transition form factors at large recoil derived from correlation functions with interpolating currents for light pseudoscalar or vector fields in soft-collinear effective theory (SCET). We consider both, factorizable and non-factorizable contributions at leading power in the Lambda/m_b expansion and to first order in the strong coupling constant alpha_s, neglecting contributions from 3-particle distribution amplitudes in the B-meson. We pay particular attention to various sources of parametric and systematic uncertainties. We also discuss certain form factor ratios where part of the hadronic uncertainties related to the B-meson distribution amplitude and to logarithmically enhanced alpha_s corrections cancel.Comment: 27 pages, 19 figures, minor corrections, matches journal versio

    ϵ\epsilon-Expansion of the Conductivity at the Superconductor-Mott Insulator Transition

    Full text link
    We study the critical behavior of the conductivity σ(ω)\sigma(\omega) at the zero temperature superconductor-Mott insulator transition in dd space-time dimensions for a model of bosons with short-range interaction and no disorder. We obtain σ(ωn)=(4e2/)σϵωn1ϵ\sigma(\omega_n ) = (4e^2/\hbar) \sigma_{\epsilon} \omega_n^{1-\epsilon}, as predicted by the scaling theory, and the prefactor σϵ\sigma_{\epsilon} is calculated in the ϵ\epsilon-expansion, to order ϵ2\epsilon ^2 (ϵ=4d\epsilon = 4-d). In two spatial dimensions, (d=3d=3), we find a value of the universal conductance σ=0.315(4e2/h)\sigma^\star =0.315 (4e^2/h), in good agreement with the known Monte Carlo results.Comment: 8 pages REVTE

    Superfluid Flow Past an Array of Scatterers

    Full text link
    We consider a model of nonlinear superfluid flow past a periodic array of point-like scatterers in one dimension. An application of this model is the determination of the critical current of a Josephson array in a regime appropriate to a Ginzburg-Landau formulation. Here, the array consists of short normal-metal regions, in the presence of a Hartree electron-electron interaction, and embedded within a one-dimensional superconducting wire near its critical temperature, TcTc. We predict the critical current to depend linearly as A(TcT)A (Tc-T), while the coefficient AA depends sensitively on the sizes of the superconducting and normal-metal regions and the strength and sign of the Hartree interaction. In the case of an attractive interaction, we find a further feature: the critical current vanishes linearly at some temperature TT* less than TcTc, as well as at TcTc itself. We rule out a simple explanation for the zero value of the critical current, at this temperature TT*, in terms of order parameter fluctuations at low frequencies.Comment: 23 pages, REVTEX, six eps-figures included; submitted to PR

    Multiwavelength Variability of Sagittarius A* in 2019 July

    Get PDF
    We report timing analysis of near-infrared (NIR), X-ray, and sub-millimeter (submm) data during a three-day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 micron with the Spitzer Space Telescope, 2-8 keV with the Chandra X-ray Observatory, 3-70 keV with NuSTAR, 340 GHz with ALMA, and at 2.2 micron with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submm and the infrared at 99% confidence. July 18 captured a moderately bright NIR flare (F_K ~ 15 mJy) simultaneous with an X-ray flare (F ~ 0.1 cts/s) that most likely preceded bright submm flux (F ~ 5.5 Jy) by about +34 (+14 -33) minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submm emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submm once the synchrotron-self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a non-thermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submm flare with the NIR/X-ray emission.Comment: Accepted for publication in The Astrophysical Journa

    Time dependent mean field theory of the superfluid-insulator phase transition

    Full text link
    We develop a time-dependent mean field approach, within the time-dependent variational principle, to describe the Superfluid-Insulator quantum phase transition. We construct the zero temperature phase diagram both of the Bose-Hubbard model (BHM), and of a spin-S Heisenberg model (SHM) with the XXZ anisotropy. The phase diagram of the BHM indicates a phase transition from a Mott insulator to a compressibile superfluid phase, and shows the expected lobe-like structure. The SHM phase diagram displays a quantum phase transition between a paramagnetic and a canted phases showing as well a lobe-like structure. We show how the BHM and Quantum Phase model (QPM) can be rigorously derived from the SHM. Based on such results, the phase boundaries of the SHM are mapped to the BHM ones, while the phase diagram of the QPM is related to that of the SHM. The QPM's phase diagram obtained through the application of our approach to the SHM, describes the known onset of the macroscopic phase coherence from the Coulomb blockade regime for increasing Josephson coupling constant. The BHM and the QPM phase diagrams are in good agreement with Quantum Monte Carlo results, and with the third order strong coupling perturbative expansion.Comment: 15 pages, 8 figures. To be published in Phys. Rev.

    Transiting Exoplanets with JWST

    Full text link
    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet measurements, and give several examples of potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade: JWST and Concurrent Facilities, Astrophysics & Space Science Library, Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht (2008)." The original publication will be available at http://www.springerlink.co

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age
    corecore