6 research outputs found

    Microwave beam power

    Get PDF
    Information on microwave beam power is given in viewgraph form. Information is given on orbit transfer proulsion applications, costs of delivering 100 kWe of usable power, and costs of delivering a 1 kg payload into orbit

    Overview of microwave concepts

    Get PDF
    An overview of microwave beamed power concepts is given in outline form. Concepts such as power transmission to operational satellites, spacecraft propulsion, lunar/planetary outpost power and planetary rover propulsion are listed in chart form and characterized in columns titled power level, benefits, and comments

    Power technologies and the space future

    Get PDF
    Advancements in space power and energy technologies are critical to serve space development needs and help solve problems on Earth. The availability of low cost power and energy in space will be the hallmark of this advance. Space power will undergo a dramatic change for future space missions. The power systems which have served the U.S. space program so well in the past will not suffice for the missions of the future. This is especially true if the space commercialization is to become a reality. New technologies, and new and different space power architectures and topologies will replace the lower power, low-voltage systems of the past. Efficiencies will be markedly improved, specific powers will be greatly increased, and system lifetimes will be markedly extended. Space power technology is discussed - its past, its current status, and predictions about where it will go in the future. A key problem for power and energy is its cost of affordability. Power must be affordable or it will not serve future needs adequately. This aspect is also specifically addressed

    Spacecraft 2000: The challenge of the future

    Get PDF
    Considerable opportunity exists to improve the systems, subsystems, components, etc., included in the space station bus, the non-payload portion of the spacecraft. The steps followed to date, the challenges being faced by industry, and the progress toward establishing a new NASA initiative which will identify the technologies required to build spacecraft of the 21st century and which will implement the technology development/validation programs necessary are described

    Mars manned transportation vehicle

    Get PDF
    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent

    Central electrical utility power for a satellite ring city in low earth orbit space

    Get PDF
    Information is given in viewgraph form on central electrical power for a satellite ring city, defined as a group of large free flyers of 10 to 20 units with perhaps 100 people in each unit, and organized in a circle so that power can be fed from a central location. The free flyers would be located at 300 to 700 miles in altitude, and spaced about a kilometer apart. Potential activities of a ring city are listed as well as the electrical power needs. Information is given on costs and individual and centralized solar arrays and nuclear reactor systems
    corecore