N90-10100 26 33

216793

CENTRAL ELECTRICAL UTILITY POWER FOR A SATELLITE RING CITY IN LOW EARTH ORBIT SPACE

IRA T. MYERS and KARL A. FAYMON NASA LEWIS RESEARCH CENTER

AND

A. D. PATTON TEXAS A&M UNIVERSITY

ND 315769 TQ 431621

PRECEDING PAGE BLANK NOT FILMED

INTRODUCTION

- CIVILIZED NATIONS REQUIRE CENTRAL ELECTRIC POWER
- COLONIES AND LARGE SPACE MANUFACTURING OR SCIENTIFIC ENDEAVORS WILL ALSO NEED CENTRAL, UTILITY POWER
- THIS PAPER TALKS ABOUT ONE SUCH CONFIGURATION -THE RING CITY - IN LOW EARTH ORBIT SPACE

WHAT IS A RING CITY?

- A GROUP OF LARGE FREE FLYERS 10 TO 20 UNITS
- PERHAPS 100 PEOPLE IN EACH UNIT
- ORGANIZED IN A CIRCLE (OR SPHERE) SO THAT POWER CAN BE FED FROM A CENTRAL LOCATION
- LOCATED AT 300 TO 700 MILES ALTITUDE
- FREE FLYERS ("BUILDINGS") SPACED ABOUT A KILOMETER APART

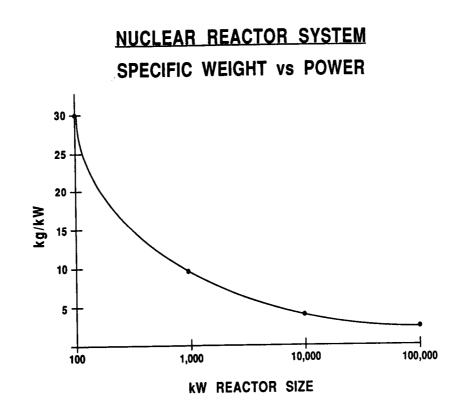
POTENTIAL ACTIVITIES OF A RING CITY

ELECTROPHORETIC SEPARATION OF PHARMACEUTICALS	\$ 1-5 B/YR
SEMICONDUCTOR DEVICES AND SENSORS	\$ 1 B/YR
 UNUSUAL ALLOYS AND FABRICATIONS (DELICATE COLD WELD ASSEMBLIES) 	\$ 1-2 B/YR
REDUCED GRAVITY MEDICAL CENTER	\$1 B/YR
HOTEL - LUXURY ACCOMMODATIONS \$5000/DAY X 360 X 300	\$ 600 M/YR
 ZERO GRAVITY RESEARCH & DEVELOPMENT INSTITUTE 100 RESEARCHERS 	\$ 1 B/YR
ULTRA HIGH VACUUM FACILITY AND RESEARCH INSTITUTE	\$1 B/YR
OUTER SPACE OBSERVATIONS	\$ 1 B/YR
EARTH OBSERVATIONS	\$ 1 B/YR
ADMINISTRATION	\$ 500 M/YR
LAUNCH FACILITY & WAY STATION	\$ 1-3 B/YR

ELECTRICAL POWER NEEDS OF A RING CITY

- LIFE SUPPORT 1500 PEOPLE @ 10 kW 15 MEGAWATTS
- MANUFACTURING, RESEARCH 10 MEGAWATTS
 - TOTAL 25 MEGAWATTS

COST OF POWER IN SPACE


٠	SPACE STATION - \$ 1 B FOR 75 kW FOR 10 YEARS	\$ 130/kW	hr
•	SPACE STATION - ESTIMATED ADD-ON POWER	\$ 30-50/kW	hr
•	LARGE REACTOR - 1 MW FOR 10 YEARS, \$ 1 B	\$ 10/kW	hr
•	VERY ADVANCED SYSTEM	~ \$ 1/kW	hr

MAGNITUDE OF UTILITY POWER COSTS

- TAKE POWER COSTS AT \$10/kW hr (INDIVIDUAL 1-2 MW PLANTS ON EACH FREE FLYER)
- 25 MW IS 2.5 x 10⁸ kW HRS FOR TOTAL RING CITY
- POWER COST AT \$10/kW hr
 \$ 2.5 B/YR
- THIS IS HIGH, BUT FOR A RING CITY CITY, BUT NOT IMPOSSIBLE, SINCE THE TOTAL GROSS VALUE PROJECTED FOR THE RING CITY IS \$ 10-18 B
- DESIREABLE TO REDUCE COSTS
- WILL INVESTIGATE CENTRALIZED POWER

PARAMETERS USED FOR COMPARISON

SOLAR ARRAY SPECIFIC WEIGHT	5 kg/kW
NUCLEAR REACTOR SPECIFIC WEIGHT	
100 kW	30 kg/kW
1 MW	10 kg/kW
10 MW	3 kg/kW
100 MW	2 kg/kW
1000 MW	1 kg/kW
BEAM POWER SYSTEM SPECIFIC WEIGHT	3 kg/kW
• BEAM POWER LINK EFFICIENCY	0.50
STORGE SPECIFIC WEIGHT	100 W hr/kg (10 kg/kW hr)
• RING CITY RADIUS	1 km
NUMBER OF FREE FLYERS	10
POWER, AVERAGE, PER FREE FLYER	1 MEGAWATT
• 2 HOUR ORBIT, 1 HOUR STORAGE	
MAX POWER FACTOR FOR 1 FF	2.0
MAX POWER FACTOR FOR 10 FF	1.2
SOLAR ARRAY - STORAGE CHARGING FACTOR	2.5

<u>COMPARISON OF WEIGHTS</u> OF DIFFERENT POWER SYSTEM <u>CONFIGURATIONS</u>

-- --- -

CASE I. INDIVIDUAL SOLAR CASE II. CENTRALIZED SOLAR CASE III. INDIVIDUAL NUCLEAR CASE IV. CENTRALIZED NUCLEAR

CASE I. INDIVIDUAL SOLAR ARRAYS

WEIGHT OF SOLAR ARRAY FOR 1 F.F. (2.5) 5 kg/hr x 1000 kW x 2 (max. power)	25,000 kgms
TOTAL WEIGHT FOR 10 F.F.	250,000 kgms
ENERGY STORAGE FOR 1 F.F. 10 kg/kW hr x 1 HR x 1000 kW	20,000 kgms
ENERGY STORAGE FOR 10 F.F.	200,000 kgms
POWER MANAGEMENT & DISTRIBUTION FOR 1 F.F. 10 kg/kW x 1000 kW	20,000 kgms
POWER MANAGEMENT& DISTRIBUTION FOR 10 F.F.	200,000 kgms
TOTAL WEIGHT FOR 1 FREE FLYER	65,000 kgms
TOTAL WEIGHT FOR 10 FREE FLYERS	650,000 kgms

SPECIFIC WEIGHT = 650 kg/kW

CASE II. CENTRALIZED SOLAR ARRAY

POWER REQUIRED (2.5) (10,000 kW) (1.2) (2)	60,000 kW
SOLAR ARRAY WEIGHT 60,000 kW x 5 kg/kW	300,000 kgms
PMAD WEIGHT	200,000 kgms
ENERGY STORAGE 10 kg/kW x 60,000 kW	600,000 kgms
BEAM POWER SYSTEM WEIGHT 3 kg/kW x 60,000 kW	180,000 kgms
TOTAL CENTRALIZED POWER SYSTEM WEIGHT	1,280,000 kgms

SPECIFIC WEIGHT = 1,280 kg/kW

CASE III. INDIVIDUAL NUCLEAR UNITS

POWER REQUIRED PER F.F. 1000 kW x 2 (peak factor)	2000 kW
NUCLEAR REACTOR WEIGHT PER F.F. 2000 kW x 7 kg/kW	14,000 kgms
POWER MANAGEMENT & DISTRIBUTION 2000 kW x 10 kg/kW	20,000 kgms
TOTAL FOR 1 FREE FLYER	34,000 kgms
TOTAL FOR 10 FREE FLYERS	340,000 kgms

SPECIFIC WEIGHT = 340 kg/kW

CASE IV. CENTRALIZED NUCLEAR UNIT

POWER REQUIRED 10,000 kW x 1.2 (2)	24,000 kW
NUCLEAR REACTOR WEIGHT 24,000 KW 2.5	60,000 kgms
BEAM POWER SYSTEM WEIGHT 24,000 kW x 3 kg/kW	72,000 kgms
PMAD WEIGHT 10000 kW x 10 kg/kW	100,000 kgms
TOTAL WEIGHT	232,000 kgms

SPECIFIC WEIGHT = 232 kg/kW

SUMMARY OF WEIGHTS

CASE	TOTAL POWER System weight kgs	SPECIFIC WEIGHT kg/kW
INDIVIDUAL SOLAR ARRAYS	650,000	650
CENTRAL SOLAR ARRAY Plus Microwave Beam	1,280,000	1280
INDIVIDUAL NUCLEAR REACTORS	340,000	340
CENTRALIZED NUCLEAR REACTOR	232,000	232

ļ

ROUGH ESTIMATE OF COST OF ELECTRICAL ENERGY IN SPACE

<u>ASSUME</u>

• PRESENT LAUNCH COSTS IN SHUTTLE	\$ 10,000/kg
• EXPECTED FUTURE LAUNCH COSTS	\$ 2000/kg
- LAUNCH COSTS 1/3 OF TOTAL SYSTEM	
- COST IN ORBIT	\$6000/kg
• SYSTEM LIFE 10 YEARS	10 ⁵ HOURS
• TOTAL ENERGY IN 10 YEARS FOR 10 MW	10 ⁹ kW HRS

.....

SUMMARY OF COSTS

CASE	TOTAL POWER SYSTEM WEIGHT (A)	TOTAL POWER SYSTEM COST 62000 A	COST PER kW HR \$
INDIVIDUAL SOLAR ARRAYS	650,000 kgm	\$4B	\$4
CENTRAL SOLAR ARRAY Plus Microwave Beam	1,280,000 kgm	\$8B	\$8
INDIVIDUAL NUCLEAR Reactors	340,000 kgm	\$2B	\$2
CENTRALIZED NUCLEAR REACTOR	232,000 kgm	\$ 1.4 B	\$1.40

CONCLUSIONS

- COST OF ELECTRIC POWER IN SPACE IS ABOUT \$ 1 - 10 PER kW HR.
- CENTRALIZED NUCLER POWER IS PROBABLY LIGHTEST WEIGHT AND LOWEST COST FOR LARGE MULTIPLE SYSTEMS OF THE FUTURE.