873 research outputs found
Detection of neural connections with ex vivo MRI using a ferritin-encoding trans-synaptic virus
The elucidation of neural networks is essential to understanding the mechanisms of brain functions and brain disorders. Neurotropic virus-based trans-synaptic tracing tools have become an effective method for dissecting the structure and analyzing the function of neural-circuitry. However, these tracing systems rely on fluorescent signals, making it hard to visualize the panorama of the labeled networks in mammalian brain in vivo. One MRI method, Diffusion Tensor Imaging (DTI), is capable of imaging the networks of the whole brain in live animals but without information of anatomical connections through synapses. In this report, a chimeric gene coding for ferritin and enhanced green fluorescent protein (EGFP) was integrated into Vesicular stomatitis virus (VSV), a neurotropic virus that is able to spread anterogradely in synaptically connected networks. After the animal was injected with the recombinant VSV (rVSV), rVSV-Ferritin-EGFP, into the somatosensory cortex (SC) for four days, the labeled neural-network was visualized in the postmortem whole brain with a T2-weighted MRI sequence. The modified virus transmitted from SC to synaptically connected downstream regions. The results demonstrate that rVSV-Ferritin-EGFP could be used as a bimodal imaging vector for detecting synaptically connected neural-network with both ex vivo MRI and fluorescent imaging. The strategy in the current study has the potential to longitudinally monitor the global structure of a given neural-network in living animals
Evidence of strong and mode-selective electron–phonon coupling in the topological superconductor candidate 2M-WS 2
The interaction between lattice vibrations and electrons plays a key role in various aspects of condensed matter physics — including electron hydrodynamics, strange metal behavior, and high-temperature superconductivity. In this study, we present systematic investigations using Raman scattering and angle-resolved photoemission spectroscopy (ARPES) to examine the phononic and electronic subsystems of the topological superconductor candidate 2M-WS2. Raman scattering exhibits an anomalous nonmonotonic temperature dependence of phonon linewidths, indicative of strong phonon–electron scattering over phonon–phonon scattering. The ARPES results demonstrate pronounced dispersion anomalies (kinks) at multiple binding energies within both bulk and topological surface states, indicating a robust and mode-selective coupling between the electronic states and various phonon modes. These experimental findings align with previous calculations of the Eliashberg function, providing a deeper understanding of the highest superconducting transition temperature observed in 2M-WS2 (8.8 K) among all transition metal dichalcogenides as induced by electron–phonon coupling. Furthermore, our results may offer valuable insights into other properties of 2M-WS2 and guide the search for high-temperature topological superconductors
Topology hierarchy of transition metal dichalcogenides built from quantum spin Hall layers
The evolution of the physical properties of two-dimensional material from
monolayer limit to the bulk reveals unique consequences from dimension
confinement and provides a distinct tuning knob for applications. Monolayer
1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum
spin Hall (QSH) states are ideal two-dimensional building blocks of various
three-dimensional topological phases. However, the stacking geometry was
previously limited to the bulk 1T'-WTe2 type. Here, we introduce the novel
2M-TMDs consisting of translationally stacked 1T'-monolayers as promising
material platforms with tunable inverted bandgaps and interlayer coupling. By
performing advanced polarization-dependent angle-resolved photoemission
spectroscopy as well as first-principles calculations on the electronic
structure of 2M-TMDs, we revealed a topology hierarchy: 2M-WSe2, MoS2, and
MoSe2 are weak topological insulators (WTIs), whereas 2M-WS2 is a strong
topological insulator (STI). Further demonstration of topological phase
transitions by tunning interlayer distance indicates that band inversion
amplitude and interlayer coupling jointly determine different topological
states in 2M-TMDs. We propose that 2M-TMDs are parent compounds of various
exotic phases including topological superconductors and promise great
application potentials in quantum electronics due to their flexibility in
patterning with two-dimensional materials
Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2
Abstract(#br)Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro , and facilitated tumor growth and metastasis in vivo . Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo . In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC
Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2.
Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo. In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC
Nonlinear optical diode effect in a magnetic Weyl semimetal
Weyl semimetals have emerged as a promising quantum material system to
discover novel electrical and optical phenomena, due to their combination of
nontrivial quantum geometry and strong symmetry breaking. One crucial class of
such novel transport phenomena is the diode effect, which is of great interest
for both fundamental physics and modern technologies. In the electrical regime,
giant electrical diode effect (the nonreciprocal transport) has been observed
in Weyl systems. In the optical regime, novel optical diode effects have been
theoretically considered but never probed experimentally. Here, we report the
observation of the nonlinear optical diode effect (NODE) in the magnetic Weyl
semimetal CeAlSi, where the magnetic state of CeAlSi introduces a pronounced
directionality in the nonlinear optical second-harmonic generation (SHG). By
physically reversing the beam path, we show that the measured SHG intensity can
change by at least a factor of six between forward and backward propagation
over a wide bandwidth exceeding 250 meV. Supported by density-functional theory
calculations, we establish the linearly dispersive bands emerging from Weyl
nodes as the origin of the extreme bandwidth. Intriguingly, the NODE
directionality is directly controlled by the direction of magnetization. By
utilizing the electronically conductive semimetallic nature of CeAlSi, we
demonstrate current-induced magnetization switching and thus electrical control
of the NODE in a mesoscopic spintronic device structure with current densities
as small as 5 kA/cm. Our results advance ongoing research to identify novel
nonlinear optical/transport phenomena in magnetic topological materials. The
NODE also provides a way to measure the phase of nonlinear optical
susceptibilities and further opens new pathways for the unidirectional
manipulation of light such as electrically controlled optical isolators.Comment: 28 pages, 12 figure
- …