53 research outputs found

    Structural prediction of Fe-Mg-O compounds at Super-Earth's pressures

    Full text link
    Terrestrial exoplanets are of great interest for being simultaneously similar to and different from Earth. Their compositions are likely comparable to those of solar-terrestrial objects, but their internal pressures and temperatures can vary significantly with their masses/sizes. The most abundant non-volatile elements are O, Mg, Si, Fe, Al, and Ca, and there has been much recent progress in understanding the nature of magnesium silicates up to and beyond ~3 TPa. However, a critical element, Fe, has yet to be systematically included in materials discovery studies of potential terrestrial planet-forming phases at ultra-high pressures. Here, using the adaptive genetic algorithm (AGA) crystal structure prediction method, we predict several unreported stable crystalline phases in the binary Fe-Mg and ternary Fe-Mg-O systems up to pressures of 3 TPa. The analysis of the local packing motifs of the low-enthalpy Fe-Mg-O phases reveals that the Fe-Mg-O system favors a BCC motif under ultra-high pressures regardless of chemical composition. Besides, oxygen enrichment is conducive to lowering the enthalpies of the Fe-Mg-O phases. Our results extend the current knowledge of structural information of the Fe-Mg-O system to exoplanet pressures

    Erythrocyte transfusion limits the role of elevated red cell distribution width on predicting cardiac surgery associated acute kidney injury

    Get PDF
    Background: Acute kidney injury (AKI) is one of the more serious complications after cardiac surgery. Elevated red cell distribution width (RDW) was reported as a predictor for cardiac surgery associated acute kidney injury (CSAKI). However, the increment of RDW by erythrocyte transfusion makes its prognostic role doubtful. The aim of this study is to elucidate the impact of erythrocyte transfusion on the prognostic role of elevated RDW for predicting CSAKI.Methods: A total of 3207 eligible patients who underwent cardiac surgery during 2016–2017 were enrolled. Changes of RDW was defined as the difference between preoperative RDW and RDW measured 24 h after cardiac surgery. The primary outcome was CSAKI which was defined by the Kidney Disease: Improving Global Outcomes Definition and Staging (KDIGO) criteria. Univariate and multivariate analysis were performed to identify predictors for CSAKI.Results: The incidence of CSAKI was 38.07% and the mortality was 1.18%. CSAKI patients had higher elevated RDW than those without CSAKI (0.65% vs. 0.39%, p < 0.001). Multivariate regression showed that male, age, New York Heat Association classification 3–4, elevated RDW, estimated glomerular filtration rate < 60 mL/min/1.73 m2, cardiopulmonary bypass time > 120 min and erythrocyte transfusion were associated with CSAKI. Subgroup analysis showed elevated RDW was an independent predictor for CSAKI in the non-transfused subset (adjusted odds ratio: 1.616, p < 0.001) whereas no significant association between elevated RDW and CSAKI was found in the transfused patients (odds ratio: 1.040, p = 0.497).Conclusions: Elevated RDW is one of the independent predictors of CSAKI in the absence of erythrocyte transfusion, which limits the prognostic role of the former on predicting CSAKI

    Association between sarcopenic obesity and mortality in patients on peritoneal dialysis: a prospective cohort study

    Get PDF
    BackgroundWhether sarcopenic obesity had unfavorable effect on survival of peritoneal dialysis (PD) patients is unknown. We aimed to investigate the association between sarcopenic obesity and survival in PD patients.MethodsThis was a prospective observational study. Eligible PD patients from November 2016 to December 2017 were enrolled and followed until August 31, 2023. Sarcopenia was defined following the recommendations of the Asian Working Group for Sarcopenia (AWGS) as low appendicular skeletal muscle mass index (ASMI) and handgrip strength (HGS). Obesity was defined using the percentage of body fat (PBF). Survival analysis was conducted using the Kaplan–Meier and log-rank test. The Cox regression and the cumulative incidence competing risk (CICR) analyzes were used to investigate the association between sarcopenic obesity and all-cause mortality.ResultsA total of 223 patients were enrolled with 133 (59.6%) males, a median age of 57.5 (44.6, 65.7) years, a median dialysis vintage of 20.3 (6.4, 57.7) months and 48 (21.5%) who had comorbid diabetes mellitus. Among them, 46 (20.6%) patients were sarcopenic, and 25 (11.2%) patients were diagnosed with sarcopenic obesity. After followed up for 51.6 (25.6, 73.9) months, the Kaplan–Meier curve showed the sarcopenic obesity (log-rank = 13.527, p < 0.001) group had significant lower survival rate compared to the nonsarcopenic non-obesity group. For multivariate analysis, the CICR method showed patients with sarcopenic obesity had significantly higher mortality rate (HR: 2.190, 95% CI: 1.011–4.743, p = 0.047) compared to those with nonsarcopenic non-obesity.ConclusionSarcopenia is not uncommon in PD patients, with a considerable proportion having sarcopenic obesity. There is a significant association between sarcopenic obesity and an increased risk of mortality in PD patients

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Stability and sensory analysis of walnut polypeptide liquid: response surface optimization

    No full text
    Bioactive peptides are small molecular peptides with some physiologically active functions. These peptides have been shown to possess antibacterial, antioxidant, and blood pressure lowering activities. Although walnuts are rich in high-quality plant proteins, the extracted walnut dregs have low utilization by the walnut industry chain. Therefore, the aim of the study was to investigate the nutritional value and antioxidant activity of walnut dregs in order to increase the added value of walnut by-products. Using the response surface methodology, the optimum process parameters of purification and stability for walnut polypeptide liquid were determined as follows: pH 4.5, 8 column/hours (h) column speed and 3:2 ratio of anion to cation. The scavenging reaction rates for hydroxyl radicals and superoxide anion by 3, 5, 10 u ultrafiltration membrane fractionation screening were found to be 73.3% and 64.4%, 66.1% and 58.9%, 59.2%, and 51.6%, respectively. After comparison, walnut polypeptide liquid showed some degree of antioxidant capacity. The stability of walnut polypeptide liquid was optimized by the response surface. Under the homogeneous pressure of 35 Mpa, the use of a certain amount of stabilizers improved the stability of walnut polypeptide liquid. In conclusion, with the addition of additives, the optimum values of parameters for walnut polypeptide liquid obtained using response surface methodology were determined as follows: the ratio of solid to liquid was 15%; the amount of protein sugar was 0.2%; the amount of citric acid was 0.25%; and the addition of walnut powder flavor was 0.15%. Also, the study has provided a theoretical basis for the waste utilization of walnut by-products, and partial support for the intensive processing of the walnut industry chain

    The detection efficacy of noninvasive prenatal genetic testing (NIPT) for sex chromosome abnormalities and copy number variation and its differentiation in pregnant women of different ages

    No full text
    Objective: To analyze the efficacy of noninvasive prenatal genetic testing (NIPT) in detecting fetal sex chromosome abnormalities and copy number variation (CNV), compare the efficacy between NIPT and serological screening alone, and further analyze the fetal sex chromosome abnormalities and CNV differentiation in pregnant women of different ages, so as to provide a reference for the prevention and control of fetal birth defects. Methods: Clinical data from 22,692 pregnant women admitted to our hospital from January 2013 to December 2022 were retrospectively analyzed. All participants underwent serological screening and NIPT screening to compare fetal chromosomal abnormalities between the two screening modalities. 145 women whose fetus were diagnosed as sex chromosome abnormalities and 36 women whose fetus were diagnosed as CNV abnormalities based on NIPT screening were selected for prenatal diagnosis by amniocentesis or karyotyping. Taking prenatal diagnosis as the standard, the four-grid table method was used to detect the positive predictive value of NIPT screening for fetal sex chromosomal abnormalities and CNV. According to the age, pregnant women were divided into 18–30 years old (n = 9844), 31–35 years old (n = 7612), >35 years old (n = 5236), and then the detection rates of sexual fetal chromosomal abnormalities, CNV and total chromosomal abnormalities were compared in pregnant women. Results: Among the 22,692 pregnant women in this study, the high-risk proportion of serologic screening with 4.38% was higher than that of NIPT screening with 1.93% (P 10 Mb were 33.33% and 66.67%, respectively. There were 12 cases of prenatal diagnosis of fetal CNV, among which the NIPT-screened positive predictive values of fetal copy number deletion, duplicate, deletion and duplicate were 50.00%, 57.14% and 100.00%, respectively, with an overall predictive value of 58.33%. The positive predictive value of CNV in NIPT screening was higher than that of serological screening without statistically significant difference (P > 0.05). The results of NIPT screening showed that the detection rate of fetal sex chromosome abnormalities and total abnormalities of pregnant women over 35 years of age was significantly higher than that of pregnant women aged 18–30 and 31–35 years (P < 0.05). Conclusion: NIPT screening could greatly improve the detection efficacy of fetal sex chromosome abnormalities, CNV and other chromosome abnormalities, and decline the false positive rate. However, the positive predictive value of NIPT screening was relatively low, and further prenatal testing and genetic counseling are still required. In addition, NIPT screening for fetal sex chromosome abnormalities, and the detection rate of total abnormalities in pregnant women older than 35 years old were increased significantly, and pregnancy at an advanced age may be one of the risk factors for fetal chromosomal abnormalities

    Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms

    No full text
    Reducing and remediating endogenous sediment pollution in urban rivers using appropriate microbiological remediation technology is regarded as a safe, effective, and environmentally sustainable mechanism. In this study, the pollutant removal efficiency of three microorganism types at different dosages was studied in the laboratory. To optimize the microbial restoration scheme, a comprehensive analysis of their effectiveness in removing total nitrogen (TN), total phosphorus (TP), total organic matter (OM), and polycyclic aromatic hydrocarbons (PAHs) was conducted, and associated structural changes in the sediment bacteria were analyzed. The results showed that using nitrifying bacteria and Bacillus as microbial agents resulted in superior removal efficiencies of TN and TP in sediments, whereas yeast was not as effective. The removal rates of TN reached 27.65% and 20.88% when 5 mg nitrifying bacteria and 10 mg Bacillus respectively, were used. A comparative analysis showed that nitrifying bacteria exhibited a better TN removal effect; however, Bacillus exhibited a better TP removal effect. The results of high-throughput sequencing revealed no significant changes to the microbial community structures when optimal microorganisms or beneficial microorganisms that thrive using OM as a source of C and energy were added. This study provides insights into the processes and mechanisms involved in the microorganism degradation of black and odorous sediment, and the results can be used as a basis for developing endogenous pollution control policies and methods for urban rivers
    • …
    corecore