19 research outputs found

    Optical Phase Conjugation Conversion through a Nonlinear Bidirectional Semiconductor Optical Amplifier Configuration

    No full text
    The optical phase conjugation (OPC) process is thoughtfully investigated in a nonlinear bidirectional semiconductor optical amplifier subsystem (SOA), demonstrating the conjugation conversion through the two ports of the SOA, simultaneously. The spectral responses, the nonlinear power curves and the quality optimization of the conjugated are discussed through the simulation in nonlinear bidirectional configuration. The experimental investigation of the polarization-insensitive SOA further confirms the OPC behavior in the bidirectional operation, achieving the error-free conjugation conversion with an output optical signal-to-noise ratio (OSNR) of up to 16 dB. The nonlinear bidirectional SOA configuration tested in the system relaxes the requirement of the conventional four-wave mixing (FWM), enabling the OPC conversion with the signal regeneration in only one unit

    Exosomal miR-27b-3p Derived from Hypoxic Cardiac Microvascular Endothelial Cells Alleviates Rat Myocardial Ischemia/Reperfusion Injury through Inhibiting Oxidative Stress-Induced Pyroptosis via Foxo1/GSDMD Signaling

    No full text
    Background. Exosomes derived from cardiac microvascular endothelial cells (CMECs) under hypoxia can mediate cardiac repair functions and alleviate pyroptosis and oxidative stress during ischemia-reperfusion (I/R) injury. This study is aimed at investigating the effect and mechanism of miR-27b-3p underlying hypoxic CMECs-derived exosomes against I/R injury. Methods. CMECs were isolated from the left ventricle of Sprague-Dawley rats, followed by culturing under hypoxic conditions or pretreatment with the miR-27b-3p inhibitor. CMECs-derived exosomes were added into H9C2 cells before hypoxia/reoxygenation (H/R) or injected into the rat heart before I/R injury. An in vivo I/R injury model was established by ligating and releasing the left anterior descending coronary artery. Expression of pyroptosis-related factors was detected using Western blot, and heart infarcted size was determined by the 2,3,5-triphenyl-2H-tetrazpinolium chloride staining method. Dual-Luciferase Reporter assays were performed to analyze the interactions of nmiR-27b-3p-forkhead box O1 (Foxo1) and Gasdermin D- (GSDMD-) Foxo1. Chromatin-immunoprecipitation (ChIP) assays were performed to validate the interactions between forkhead box O1 (Foxo1) and Gasdermin D (GSDMD) and Foxo1-mediated histone acetylation of GSDMD. Results. CMECs were successfully identified from left ventricle of Sprague-Dawley rats. The expressions of Foxo1 and pyroptosis-related proteins (GSDMD, NLPR3, cleaved caspase 1, IL-1β, and IL-18) were upregulated in the rat heart after I/R injury. Treatment of CMEC-derived exosomes, especially that under hypoxic conditions, significantly reduced pyroptosis in the rat heart. miR-27b-3p was significantly upregulated in CMEC-derived exosomes under hypoxic conditions, and miR-27b-3p inhibition in exosomes alleviated its cytoprotection and inhibited oxidative stress in H9C2 cells. Treatment with Foxo1 overexpression plasmids aggravated in vitro H/R and in vivo I/R injury by upregulating pyroptosis-related proteins. Further experiments validated that miR-27b-3p negatively targeted Foxo1, which bound to the promoter region of GSDMD. Conclusions. These results demonstrated a great therapeutic efficacy of miR-27b-3p overexpression in hypoxic CMEC-derived exosomes in preventing the development of myocardial damage post I/R injury through inhibiting Foxo1/GSDMD signaling-induced oxidative stress and pyroptosis

    Adsorption of Phenol and <i>p</i>‑Nitrophenol from Aqueous Solutions on Metal–Organic Frameworks: Effect of Hydrogen Bonding

    No full text
    Three metal–organic frameworks (MOFs), MIL-100­(Fe, Cr) and NH<sub>2</sub>-MIL-101­(Al), were prepared, and their adsorption equilibria for phenol and <i>p</i>-nitrophenol (PNP) from water were investigated. All three MOFs show similar and limited adsorption capacities for phenol, but NH<sub>2</sub>-MIL-101­(Al) reveals exceptional adsorption capacity for PNP, greatly exceeding those of MIL-100­(Fe, Cr). MIL-100­(Fe, Cr) possess similar adsorption affinity for phenol and PNP, which suggests that the effect of metal ions and the coordinatively unsaturated sites in MOFs show negligible effect for phenol and PNP adsorption from water. NH<sub>2</sub>-MIL-101­(Al) exhibits superior adsorption capacity for PNP and uniquely higher adsorption selectivity for PNP over phenol than a benchmark activated carbon. The remarkable adsorption affinity is attributed to the hydrogen bonding between PNP and the amino groups in NH<sub>2</sub>-MIL-101­(Al). Phenol and PNP displayed a fast adsorption kinetics on NH<sub>2</sub>-MIL-101­(Al) and followed a pseudo-second-order kinetic model. This work highlights that introducing functional groups into MOFs through an organic linker is a promising way to tailor MOFs for aqueous adsorption and separation

    Comparative Mapping and Candidate Gene Analysis of SSIIa Associated with Grain Amylopectin Content in Barley (Hordeum vulgare L.)

    No full text
    Amylopectin concentration in barley endosperm has important effects on grain quality and end-use. In this study, quantitative trait locus (QTL) analysis together with genome-wide association studies (GWAS) were performed to identify markers linked to grain amylopectin content respectively using a doubled haploid (DH) population of 178 lines and a collection of 185 diverse barley germplasms both genotyped by genotyping-by-sequencing (GBS). A stable QTL on chromosome 7H and 11 associated single nucleotide polymorphisms (SNPs) were detected. In the co-localized region, the SSIIa (SSII-3) gene was predicted as the candidate gene. Then we isolated and characterized biparental SSIIa alleles of the DH population, investigated the expression pattern by quantitative real-time PCR (qRT-PCR), and revealed that a 33-bp deletion in exon 2 is responsible for reducing SSIIa transcript, thus resulting in a reduced amylopectin content. A sequence-based molecular marker was developed for the SSIIa allele and validated the effectivity, which would provide help for barley breeding

    Comparison of pasting properties measured from the whole grain flour and extracted starch in barley (Hordeum vulgare L.).

    No full text
    Pasting properties of barley starch are important characteristics from a processing standpoint. The isolation of starch form barley grains is time consuming thus the whole grain flour is always used. To compare pasting properties of starch with those of the whole grain flour, we used a Rapid Visco Analyser (RVA) to measure pasting properties of three types of samples: grain flour and starches isolated using two different extraction methods. We also investigated compositional, morphological and structural properties of the two starch samples. Significant differences in pasting properties were found among the three sample types, but most of the parameters of pasting properties displayed significant correlations between flour and starch. No significant differences were found in amylose/amylopectin ratio, granule morphology, granule size distribution and crystal structure between starches extracted using two different methods. However, the starch isolated from water homogenization had a higher protein content and lower total starch, amylose and amylopectin contents than the starch extracted with homogenized extraction under alkaline conditions. We concluded that the whole grain flour can be used to predict the pasting properties in breeding programs
    corecore