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Lack of association of polymorphisms in homocysteine metabolism
genes with pseudoexfoliation syndrome and glaucoma

Bao Jian Fan,1 Teresa Chen,1 Cynthia Grosskreutz,1 Louis Pasquale,1 Douglas Rhee,1 Elizabeth DelBono,1
Jonathan L. Haines,2 Janey L. Wiggs1

1Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA; 2Center for Human
Genetics Research, Vanderbilt University Medical School, Nashville TN

Purpose: To evaluate genes involved in homocysteine metabolism as secondary risk factors for pseudoexfoliation
syndrome (PXFS) and the associated glaucoma (PXFG).
Methods: One hundred eighty-six unrelated patients with PXFS, including 140 patients with PXFG and 127 unrelated
control subjects were recruited from the Massachusetts Eye and Ear Infirmary. All the patients and controls were Caucasian
of European ancestry. Seventeen tag SNPs from 5 genes (methylenetetrahydrofolate reductase [MTHFR], methionine
synthase [MTR], methionine synthase reductase [MTRR], methylenetetrahydrofolate dehydrogenase [MTHFD1], and
cystathionine β-synthase [CBS]) were genotyped. Single-SNP association was analyzed using Fisher’s exact test
(unconditional) or logistic regression after conditioning on the effects of age and three LOXL1 SNPs (rs1048661,
rs3825942, and rs2165241). Interaction analysis was performed between the homocysteine and LOXL1 SNPs using logistic
regression. Haplotype analysis and the set-based test were used to test for association of individual genes. Multiple
comparisons were corrected using the Bonferroni method.
Results: One SNP (rs8006686) in MTHFD1 showed a nominally significant association with PXFG (p=0.015, OR=2.23).
None of the seventeen SNPs tested were significantly associated with PXFS or PXFG after correcting for multiple
comparisons (Bonferroni corrected p>0.25). After controlling for the effects of age and three associated LOXL1 SNPs,
none of the seventeen tested SNPs were associated with PXFS (p>0.12). No significant interaction effects on PXFS were
identified between the homocysteine and LOXL1 SNPs (p>0.06). Haplotype analysis and the set-based test did not find
significant association of individual genes with PXFS (p>0.23 and 0.20, respectively).
Conclusions: Five genes that are critical components of the homocysteine metabolism pathway were evaluated as
secondary factors for PXFS and PXFG. Our results suggest that these genes are not significant risk factors for the
development of these conditions.

Pseudoexfoliation syndrome (PXFS) is a common
condition characterized by the deposition of microfibrillar
material throughout the eye. The composition of the PXFS-
related material, although not completely defined, appears to
be a complex glycoprotein structure containing elements of
basement membranes and the elastic fiber system [1]. The
biologic processes that cause this material to accumulate in
ocular structures are not known. In eyes with PXFS, fibrillar
material is found throughout the anterior segment and is
typically evident on the lens capsule and in the angle where it
may impede the flow of aqueous humor through the trabecular
outflow pathways [2]. Over 50% of individuals with PXFS
develop high-pressure glaucoma (PXFG) which may be
associated with rapidly progressive optic nerve degeneration
[3].
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Pseudoexfoliation syndrome and the associated
glaucoma appear to be genetically complex. Twin studies and
reports of familial aggregation demonstrated significant
heritability but not a clearly defined inheritance pattern,
suggesting complex or multifactorial inheritance [4-6]. A
genome-wide scan using a large Finnish family indicated
potential linkage to multiple chromosome regions including
18q, 2q, 17q, and 19q [7]. Recently, a genome-wide
association study identified significant association of three
SNPs (rs1048661,rs3825942, and rs2165241) in the lysyl
oxidase-like 1 (LOXL1) gene with PXFS and PXFG in patients
from Iceland and Sweden [8]. This association has been
replicated in our study of a USA clinic-based population with
broad ethnic diversity [9] and in other studies using ethnic
populations of Caucasian [10-16], Indian [17], and Japanese
[18-22]. These results demonstrate that LOXL1 is a major gene
associated with PXFS and PXFG.

Two of the highly associated LOXL1 SNPs are missense
changes in exon 1 (rs3825942, G153D and rs1048661,
R141L), however, it is not yet known if these variants are
biologically causative or are in linkage disequilibrium with
other gene variants that are biologically active. The G153D
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risk allele (G) frequency is very high in PXFG patients in most
of the populations studied (92%–99%), but is also prevalent
in control samples, with a frequency of over 65% in many
populations [8-22]. In addition, in the Australian population
the frequency of the rs3825942 risk allele is much higher than
the disease prevalence, indicating a reduction in penetrance
compared to the USA and European populations [14].
Collectively, these results suggest that additional genetic and/
or environmental factors that are potentially additive and/or
protective could influence the development of this complex
disorder [23].

Previous reports have indicated that homocysteine is
moderately elevated in aqueous humor, tear fluid, and serum
plasma of patients with PXFS and PXFG [24-26]. It has been
proposed that mild elevations of homocysteine may contribute
to the increased vascular risk that has been observed in
patients with PXFS, which includes aneurysms of the
abdominal aorta [27]. It is well recognized that
hyperhomocysteinemia is associated with vascular
abnormalities [28], and the modest elevations reported in
PXFS patients could initiate vascular damage that could be
further compromised by abnormal LOXL1 activity. Variants
in genes that regulate the homocysteine pathways could be
responsible for the observed elevations of homocysteine and
these may be additive genetic factors that influence the
development of the syndrome. The purpose of this study was
to evaluate 5 genes encoding enzymes that regulate
homocysteine metabolism as secondary factors that could
contribute to PXFS and PXFG.

METHODS
Patients and control subjects: One hundred eighty-six
patients with PXFS were recruited from the Glaucoma
Consultation Service at the Massachusetts Eye and Ear
Infirmary, Boston, MA. Patients with PXFS were identified
by the presence of the characteristic fibrillar material on the
lens capsule or pupillary margin. Patients with iris
transillumination defects without the presence of the fibrillar
material were not identified as pseudoexfoliation patients, or
controls. Of the 186 patients with PXFS, 140 had glaucoma
(PXFG) and 46 did not (PXFNG). Glaucoma was defined as:
intraocular pressure >22 mmHg in both eyes on two occasions
or intraocular pressure >19 mmHg in both eyes on treatment
with two or more glaucoma medications; evidence of optic
nerve damage in both eyes; and visual field defects consistent
with optic nerve damage and characteristic for glaucoma in at
least one eye. One hundred twenty-seven control subjects
were recruited from the Comprehensive Ophthalmology
Service at the Massachusetts Eye and Ear Infirmary, Boston,
MA. Control subjects had no evidence of pseudoexfoliation
or glaucoma after clinical exam. The average age of the PXFS
patients was 75. Because of the age-dependence of the
pseudoexfoliation syndrome, only controls older than age 60
were used for this analysis with an average age of 72. This

study population (cases and controls) included only Caucasian
participants of European ancestry. Fifty-nine percent of the
patients were female with 41% male, while 51% of the
controls were female and 49% were male. This study adhered
to the tenets of the Declaration of Helsinki and has been
reviewed and approved by the Institutional Review Board of
the Massachusetts Eye and Ear Infirmary. Informed consent
was obtained from all patients and controls.
Gene polymorphisms and genotyping: Five genes that encode
proteins that are involved in homocysteine metabolism were
investigated in this study (Figure 1). These genes are MTHFR
(methylenetetrahydrofolate reductase), MTR (methionine
synthase), MTRR (methionine synthase reductase), MTHFD1
(methylenetetrahydrofolate dehydrogenase), and CBS
(cystathionine β-synthase). Tag SNPs corresponding to
linkage disequilibrium (LD) blocks were selected using
Haploview (version 4.1) [29] according to the HapMap data
(release 23a) from the CEU population. The minimum minor
allele frequency for checking markers was set to 0.01. Three
or 4 tag SNPs were selected for each gene to capture the
majority of alleles at r2 greater than 0.8 across the whole gene
including the 5′UTR and 3′UTR (Table 1). Each LD block was
captured by 1 or 2 SNPs although not all alleles in each gene
were captured. Genotyping was performed either by TaqMan
assays (Applied Biosystems [ABI], Foster City, CA) or by
direct sequencing. For the TaqMan assays, oligonucleotide
primers were ordered from ABI (assay by demand) and
performed according to the manufacturer’s instructions. For
direct sequencing, products from PCR amplification were
purified and sequenced using BigDye® chemistries (ABI) and
an automated genetic analyzer (model 3100; ABI). Sequence
data was analyzed using Vector NTI suite (version 8).

Statistical analysis: Statistical analyses were performed using
PLINK (version 1.04) [30]. Hardy–Weinberg equilibrium was
assessed by the χ2 test. Linkage disequilibrium was measured
using r2. Initial single-SNP association analysis was
performed using the Fisher's exact test. Multivariable analysis
of individual SNPs was performed using logistic regression
models. The additive effects model was applied to analysis of
allele dosage in which the genotypes AA, AB, BB were coded
as 0, 1, 2, respectively, where A represents the minor allele
and B represents the common allele. After controlling for the
effects of age and three significant LOXL1 SNPs
(rs1048661,rs3825942, and rs2165241), individual SNPs in
the homocysteine genes were analyzed for association with
PXFS using logistic regression. Interaction analysis of pair-
wise SNPs between the homocysteine SNPs and the LOXL1
SNPs was performed by including an interaction term in the
logistic regression models. Haplotype analysis and the set-
based test were used to test for association of individual genes.
Haplotype frequencies were estimated using the standard E-
M algorithm and tested using the χ2 test. The omnibus p-values
for haplotype analysis were obtained from the omnibus test.
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The set-based test selects the best set of SNPs whose mean of
these single SNP statistics is significant after permutation,
which is particularly suited to large-scale candidate gene
studies [31]. The empirical p values of the set-based test were
obtained by a permutation of 10,000 times of phenotype
labels. Multiple comparisons were corrected using the
Bonferroni method.

RESULTS
Single-SNP association analysis: Seventeen SNPs in five
genes were analyzed for association with PXFS, PXFG, and
PXFNG (Table 1). All of these SNPs followed Hardy–
Weinberg equilibrium in both cases and controls (p>0.05).
The selected SNPs were not in strong LD (r2<0.26), which is
consistent with the HapMap data from the CEU population.
Only one SNP, rs8006686 in MTHFD1, showed a marginally
significant association with PXFS (p=0.015; OR=2.07,
95%CI: 1.16, 3.71) and PXFG (p=0.015; OR=2.23, 95%CI:
1.19, 4.16). However, none of these SNPs were significantly

associated with PXFS, PXFG or PXFNG after correcting for
multiple comparisons (Bonferroni corrected p>0.25; Table 2).

After controlling for the effects of age and the three
significant LOXL1 SNPs (rs1048661, rs3825942, and
rs2165241), logistic regression analysis also showed that none
of the SNPs in the homocysteine genes were associated with
PXFS (p>0.12; Table 3). No significant interaction effects on
PXFS were found between the homocysteine SNPs and the
LOXL1 SNPs (p>0.06; data not shown).
Gene-based association analysis: Haplotype association
analysis of all the tag SNPs in each gene revealed no
association of individual genes with PXFS (omnibus p>0.23;
Table 4). Set-based association tests also did not identify
significant association of individual genes with PXFS
(empirical p>0.04, Bonferroni corrected p>0.20; Table 4).

DISCUSSION
Recent studies suggest that LOXL1 is a major gene associated
with PXFS/PXFG, contributing to the majority of cases in

Figure 1. Homocysteine metabolic pathways. Products of the enzymatic pathways are shown in rectangles, co-factors are shown in circles,
and enzymes are in text. The genes coding for the enzymes included in this study are shown as underlined text. Abbreviations: B12, vitamin B12;
BHMT, betaine-homocysteine methyltransferase; CBS, cystathionine beta synthase; DHF, dihydrofolate; DHFR, dihydrofolate reductase;
dTMP, thymidine monophosphate; dUMP, uridine monophosphate; FAD, flavin adenine dinucleotide; GLY, glycine; MTHFD1,
trifunctional methylenetetrahydrofolate dehydrogenase, cyclohydrolase, synthase; MTHFR, methylenetetrahydrofolate reductase; MTR, 5-
methyltetrahydrofolate-homocysteine methyltransferase; MTRR, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase;
MT, methyl transferase; SAH, S-adenosylhomocysteine hydrolase; SER, serine; THF, tetrahydrofolate; TS, thymidylate synthase; 5-CH3-
THF, 5-methyl tetrahydrofolate; 5,10-CH2=THF, methylene tetrahydrofolate; 5,10=CH2-THF, methenyl tetrahydrofolate; 10-CHO-
THF, 10-formyl tetrahydrofolate.
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most populations [8-22]. However, the high prevalence of the
rs3825942 risk allele in control populations, and the apparent
variable penetrance of the condition in some populations
suggest that additional genetic factors and/or environmental
exposures could be involved in the development of this
complex disease. As moderate hyperhomocysteinemia has
been repeatedly described in PXFS and PXFG patients
[24-26], we evaluated the genes that code for proteins

involved in homocysteine metabolism as candidates for
secondary factors contributing to this disease.

Multiple reports have indicated that patients with PXFS
have mild elevations of homocysteine in serum plasma, as
well as aqueous humor and tear fluid [24-26]. As the
association of hyperhomocysteinemia with vascular disease
has been well documented [28], and ocular and systemic blood
vessels in PXFS can be abnormal [32], we hypothesized that
elevated homocysteine caused by variant forms of genes

TABLE 1. CHARACTERISTICS AND GENOTYPE COUNTS OF THE 17 SNPS IN 5 HOMOCYSTEINE GENES.

Gene SNP Chr Position (bp)
Codon
change

Genotype count (AA/AB/BB)*
PXFS PXFG PXF NG Controls

MTHFR rs1801131 1 11777063 E429A 13/29/37 11/20/26 2/9/11 9/19/22
MTHFR rs1801133 1 11778965 A222V 10/41/33 7/31/23 3/10/10 7/22/21
MTHFR rs17037396 1 11784634 intron 0/15/71 0/13/46 0/2/25 0/17/73

MTR rs12096955 1 235055726 intron 14/40/31 10/28/21 4/12/10 12/39/40
MTR rs2229274 1 235056807 D294N 0/3/80 0/2/59 0/1/21 0/4/53
MTR rs1805087 1 235115123 D919G 6/57/121 6/44/88 0/13/33 6/38/74

MTRR rs326122 5 7929611 intron 2/29/53 1/20/37 1/9/16 5/22/62
MTRR rs1532268 5 7931179 S202L 7/37/37 6/26/26 1/11/11 11/25/18
MTRR rs161870 5 7931192 L206L 17/27/20 11/22/14 6/5/6 10/19/11
MTRR rs162036 5 7938959 R377K 4/20/63 4/13/43 0/7/20 3/20/68

MTHFD1 rs8006686 14 63938424 intron 5/27/55 2/23/35 3/4/20 0/21/70
MTHFD1 rs2236225 14 63978598 R653Q 34/96/51 24/71/42 10/25/9 30/52/35
MTHFD1 rs11627387 14 63993730 intron 7/31/45 4/23/30 3/8/15 8/32/50

CBS rs2124459 21 43348783 intron 16/43/29 9/39/23 7/4/6 14/40/37
CBS rs1801181 21 43353685 A360A 21/75/77 13/60/58 8/15/19 14/43/49
CBS rs5742905 21 43356253 I278T 1/32/151 1/25/112 0/7/39 2/10/96
CBS rs234715 21 43361464 intron 4/29/55 3/25/43 1/4/12 5/30/54

The asterisk indicates that “A” represents the minor allele and “B” represents the common allele.

TABLE 2. SINGLE-SNP ASSOCIATION OF HOMOCYSTEINE GENES WITH PXFS, PXFG AND PXFNG.

Gene SNP
Minor
allele

Minor allele frequency p value*

PXFS PXFG             PXFNG               Controls           PXFS            PXFG            PXFNG
MTHFR rs1801131 C 0.348 0.368 0.295 0.370 0.79 1.00 0.45
MTHFR rs1801133 T 0.363 0.369 0.348 0.360 1.00 1.00 1.00
MTHFR rs17037396 T 0.087 0.110 0.037 0.094 0.85 0.70 0.26

MTR rs12096955 T 0.400 0.407 0.385 0.346 0.32 0.33 0.62
MTR rs2229274 A 0.018 0.016 0.023 0.035 0.45 0.43 1.00
MTR rs1805087 G 0.188 0.203 0.141 0.212 0.47 0.83 0.16

MTRR rs326122 G 0.196 0.190 0.212 0.180 0.78 0.88 0.69
MTRR rs1532268 T 0.315 0.328 0.283 0.435 0.053 0.10 0.10
MTRR rs161870 A 0.477 0.468 0.500 0.488 0.89 0.88 1.00
MTRR rs162036 A 0.161 0.175 0.130 0.143 0.66 0.52 1.00

MTHFD1 rs8006686 C 0.213 0.225 0.185 0.115 0.015 0.015 0.25
MTHFD1 rs2236225 T 0.453 0.434 0.489 0.479 0.56 0.33 0.62
MTHFD1 rs11627387 G 0.271 0.272 0.269 0.267 1.00 1.00 1.00

CBS rs2124459 C 0.426 0.401 0.471 0.374 0.33 0.65 0.13
CBS rs1801181 T 0.338 0.328 0.369 0.335 1.00 0.92 0.59
CBS rs5742905 C 0.092 0.098 0.076 0.065 0.28 0.25 0.81
CBS rs234715 G 0.210 0.218 0.176 0.225 0.80 1.00 0.65

The asterisk indicates that p values were obtained from Fisher’s exact test when compared to controls. The Bonferroni corrected
significance level was 0.003 (0.05/17).
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coding for key enzymes involved in homocysteine
metabolism could contribute to the PXFS. Defects in LOXL1
can also compromise the elastic structure of blood vessels
[33], and that the combined effects of elevated serum
homocysteine and LOXL1 deficiency could synergistically
contribute to vascular compromise. Abnormalities of ocular
vasculature, especially blood vessels in the iris could be
related to the deposition of the microfibrillar material that is
characteristic of the disease process. Previous studies have

failed to show an association between homocysteine
metabolism genes and PXFS [34-39], however these studies
have evaluated only the well studied common C677T
polymorphism (rs1801133) in MTHFR, a central regulator of
homocysteine levels. In this study we took a broader approach
and evaluated 5 genes involved in homocysteine metabolism,
including the MTHFR gene. We did not find any significant
association between any of the homocysteine genes and PXFS
and/or PXFG in this present study.

TABLE 3. SINGLE-SNP ASSOCIATION OF HOMOCYSTEINE GENES WITH PXFS AFTER CONTROLLING FOR THE EFFECTS OF AGE AND
3 LOXL1 SNPS.

Gene SNP                             Minor allele p value* OR (95% CI)*
MTHFR rs1801131 C 0.95 0.98 (0.49, 1.96)
MTHFR rs1801133 T 0.55 0.79 (0.37, 1.70)
MTHFR rs17037396 T 0.81 0.89 (0.33, 2.40)

MTR rs12096955 T 0.23 1.43 (0.80, 2.54)
MTR rs2229274 A 0.55 0.52 (0.06, 4.41)
MTR rs1805087 G 0.69 0.90 (0.52, 1.55)

MTRR rs326122 G 0.95 1.02 (0.50, 2.07)
MTRR rs1532268 T 0.82 1.09 (0.50, 2.38)
MTRR rs161870 A 0.46 0.74 (0.33, 1.65)
MTRR rs162036 A 0.91 0.96 (0.49, 1.90)

MTHFD1 rs8006686 C 0.21 1.62 (0.76, 3.45)
MTHFD1 rs2236225 T 0.77 0.93 (0.59, 1.47)
MTHFD1 rs11627387 G 0.24 0.68 (0.36, 1.29)

CBS rs2124459 C 0.71 1.13 (0.61, 2.10)
CBS rs1801181 T 0.49 1.18 (0.74, 1.89)
CBS rs5742905 C 0.12 2.07 (0.84, 5.14)
CBS rs234715 G 0.57 0.80 (0.36, 1.74)

The asterisk indicates that p values and odds ratios (OR) with 95% confidence intervals (CI) were obtained from logistic
regression analysis of single-SNP association of homocysteine genes with PXFS after controlling for the effects of age and the 3
LOXL1  SNPs ( rs1048661, rs3825942 , and rs2165241).

TABLE 4. GENE-BASED ASSOCIATION OF HOMOCYSTEINE GENES WITH PXFS.

Gene SNPs
p value

Haplotype test* Set-based test#

MTHFR rs1801131 , 
rs1801133, rs17037396

0.97 1.00

MTR rs12096955 , 
rs2229274, rs1805087

0.68 1.00

MTRR rs326122 , 
rs1532268, rs161870, rs162036

0.85 0.19

MTHFD1 rs8006686 , 
rs2236225, rs11627387

0.30 0.04

CBS rs2124459 , 
rs1801181, rs5742905, rs234715

0.23 1.00

The asterisk indicates that the p values were obtained from the omnibus haplotype test using PLINK (version 1.04) [30] and the
the sharp (hash mark) indicates that the p values were obtained from the set-based test by a permutation of 10,000 times using
PLINK (version 1.04) [30]. The Bonferroni corrected significance level was 0.01 (0.05/5).
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Cystathionine β-synthase catalyzes the transsulfuration
of homocysteine to cystathionine. The CBS c.844_845ins68
mutation has been associated with increased CBS enzyme
activity and decreased homocysteine levels [40,41], and has
been hypothesized to have a protective effect against vascular
thromboembolic disease [42]. We initially sequenced a
sample of 100 patients with PXFS and 100 controls and
observed that another CBS variant, rs5742905 (I278T), was
in complete linkage disequilibrium with c.844_845ins68
(r2=1.0). We therefore considered rs5742905 as a surrogate
for c.844_845ins68 and only genotyped rs5742905 in our
subsequent samples using TaqMan assays. In our population,
we did not find any association of rs5742905 with PXFS or
PXFG, and so did the c.844_845ins68 mutation.

As age and LOXL1 variants are two known major risk
factors for PXFS and PXFG, we analyzed the association
between SNPs in homocysteine metabolism genes and PXFS
and PXFG using logistic regression after controlling for the
effects of age and the LOXL1 variants. The MTHFD1 SNP
rs8006686 was marginally associated with PXFG before
correction for multiple comparisons (p=0.015; Table 2).
However, this association disappeared after controlling for the
effects of age and the LOXL1 variants (p=0.21; Table 3). To
increase the statistical power to identify a possible association,
we further analyzed our data using haplotype analysis and the
set-based test, both of which are gene-based tests where all
SNPs in a gene are analyzed together. The set-based test is
particularly suited to large-scale candidate gene studies [31].
This method selects the best set of SNPs whose mean statistic
is significant, leading to the inference that the entire set of
SNPs might be interacting in some way to increase disease
risk, or else that they are all contributing independently to
disease risk. In the present study, both haplotype analysis and
the set-based test did not find any significant association
between the homocysteine genes and PXFS or PXFG (Table
4), in agreement with the logistic regression analysis of single
SNPs in the homocysteine genes after controlling for the
effects of age and the LOXL1 variants (Table 3).

We estimated that the present study had 86% of power to
detect a moderate genetic effect (genotypic relative risk of 2.0
for Aa and 4.0 for AA, given an additive risk model) [43].
However, this study had only 40% of the power needed to
detect a mild genetic effect (genotypic relative risk of 1.5 for
Aa and 2.25 for AA, given an additive risk model). In addition,
since we used tag SNPs to capture the majority of the variants
in each gene, it is possible that we might have missed other
variants in these genes associated with the disease. Further
large-scale studies and resequencing of the whole genes are
warranted to confirm our findings.

Dietary factors that are important regulators of
homocysteine metabolism have also been shown to be
abnormal in PXFS and PXFG patients including low levels of
B6, B12, and folate [44]. It is possible that diets that are low

in these vitamins may contribute to these conditons by causing
an elevation of  homocysteine  levels with subsequent
interaction with the vascular insult caused by defective
LOXL1. Although further documentation is necessary before
disease risks can be determined, individuals who are carriers
of the LOXL1 at risk genotypes should be encouraged to
maintain adequate levels of B6, B12, and folate in their diet.

In summary, five genes that code for critical components
of the homocysteine metabolism pathway were evaluated as
secondary factors for PXFS/PXFG in the present study. Our
results suggest that variants in these genes are not major risk
factors for the development of these conditions. Other
important regulators of homocysteine metabolism, such as
dietary intake of B6, B12, and folate may be contributing
secondary environmental factors. Further studies searching
for secondary genetic and environmental factors that
contribute to PXFS and PXFG are required to gain a better
understanding of the complex etiology of this important
ocular disease.
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