282 research outputs found

    Switching the magnetic configuration of a spin valve by current induced domain wall motion

    Full text link
    We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.Comment: 3 pages, 3 figure

    Direct probing of band-structure Berry phase in diluted magnetic semiconductors

    Get PDF
    We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.Comment: 7 pages, 6 figure

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time τϕ(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure

    Bioactive flavanones from Luma chequen

    Get PDF
    A bioassay-guided chemical study of a methanolic extract of fresh leaves of Luma chequen led to the isolation of lumaflavanones A (1), B (2) and C (3) whose structures are proposed on the basis of NMR spectroscopic data. The structure of lumaflavanone A was confirmed by X-ray analysis. Antifeedant (Spodoptera littoralis), brine shrimp (Artemia salina) and fungistatic (Botrytis cinerea) bioassays showed that while 3 was the most active in the first two assays the mixture of 1 and 2 was more effective as a fungistatic

    Tuning decoherence with a voltage probe

    Full text link
    We present an experiment where we tune the decoherence in a quantum interferometer using one of the simplest object available in the physic of quantum conductors : an ohmic contact. For that purpose, we designed an electronic Mach-Zehnder interferometer which has one of its two arms connected to an ohmic contact through a quantum point contact. At low temperature, we observe quantum interference patterns with a visibility up to 57%. Increasing the connection between one arm of the interferometer to the floating ohmic contact, the voltage probe, reduces quantum interferences as it probes the electron trajectory. This unique experimental realization of a voltage probe works as a trivial which-path detector whose efficiency can be simply tuned by a gate voltage

    Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation

    Full text link
    We have studied the annealing effect in transport properties of High temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low temperature annealing (80 degrees Celsius) increases the JJ transition temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn the normal resistance. We found that the spread in JJ characteristics can be lowered by sufficient long annealing times. Using random walk numerical simulations, we showed that the characteristic annealing time and the evolution of the spread in JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one.Comment: 7 pages and 3 figures submitted to Applied Physics Letter

    Study and optimization of ion-irradiated High-Tc Josephson nanoJunctions by Monte Carlo simulations

    Full text link
    High Tc Josephson nanoJunctions (HTc JnJ) made by ion irradiation have remarkable properties for technological applications. However, the spread in their electrical characteristics increases with the ion dose. We present a simple model to explain the JnJ inhomogeneities, which accounts quantitatively for experimental data. The spread in the slit's width of the irradiation mask is the limiting factor.Monte Carlo simulations have been performed using different irradiation conditions to study their influence on the spread of the JnJ charcateristics. A "universal" behavior has been evidenced, which allows to propose new strategies to optimize JnJ reproducibility.Comment: 14 pages, 6 Figures. accepted in Journal of Applied Physic

    Aharonov-Bohm cages in the GaAlAs/GaAs system

    Full text link
    Aharonov-Bohm oscillations have been observed in a lattice formed by a two dimensional rhombus tiling. This observation is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have investigated the low temperature magnetotransport of the T3 lattice realized in the GaAlAs/GaAs system. Using an additional electrostatic gate, we have studied the influence of the channel number on the oscillations amplitude. Finally, the role of the disorder on the strength of the localization is theoretically discussed.Comment: 6 pages, 11 EPS figure

    Quantum coherence engineering in the integer quantum Hall regime

    Full text link
    We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure
    corecore