139 research outputs found

    The Unique Hemoglobin System of Pleuragramma antarcticum, an Antarctic Migratory Teleost STRUCTURE AND FUNCTION OF THE THREE COMPONENTS

    Get PDF
    Pleuragramma antarcticum (suborder Notothenioidei, family Nototheniidae) is the most abundant fish in the antarctic shelf. This pelagic species has a circum-antarctic distribution and is characterized by spawning migration. This species displays the highest multiplicity of major hemoglobins (three); the other notothenioids have a single one (except one species, having two) with relatively low oxygen affinity regulated by pH and organophosphates. The hemoglobins of P. antarcticum display strong Bohr and Root effects; however, they reveal important functional differences in subunit cooperativity and organophosphate regulation and, above all, in the response of oxygenation to temperature. Despite the substitution ValbetaE11 --> Ile found in Hb 2, which decreases the affinity in human mutants, the hemoglobins have similar oxygen affinity, higher than that of the other notothenioids. Hb 1 has the alpha chain in common with Hb 2 and the beta in common with Hb 3. The amino acid sequence of all four chains has been established. Thus the hematological features of P. antarcticum differ remarkably from those of antarctic notothenioids. This unique and sophisticated oxygen transport system may adequately meet the requirements of the unusual mode of life of this fish

    Natural history and evolution of an elevational generalist, the Cinereous Conebill (Conirostrum cinereum)

    Get PDF
    Elevational generalism is relatively rare in the tropical Andes Mountains, likely owing to the inherent requirements of enduring a high degree of climatic zonation and coping with hypoxic stress. The Cinereous Conebill (Conirostrum cinereum) appears to be an exception, and inhabits a continuous elevational distribution that spans over 4,500 m. Two subspecies, cinereum and fraseri, are restricted to high elevations and may be isolated, whereas the third and most widespread, littorale, occurs continuously along the western slope of the Andes from 0 to over 4,500 m. First, we aim to characterize the morphology, genetics, and climatic niche of the three subspecies using a comparative biogeographic approach to explore patterns and timing of differentiation and to consider possible mechanisms of diversification. Second, we study whether hemoglobin adaptation plays a role in this elevational generalist’s ability to thrive in high-elevation environments, and whether localized adaptation is possible despite altitudinal migration and gene flow. We used a comparative phylogeographic framework to examine whether lineage divergence within C. cinereum is associated with climatic, geographic, and/or physiological barriers leading to incipient speciation

    The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    Get PDF
    The bar-headed goose (‘BHG’, Anser indicus) is renowned for its trans-Himalayan migratory flights, and the elevated hemoglobin (Hb)-O2 affinity of this species is thought to make a key contribution to its capacity for powered flight at elevations of ~9000 m. Here we revisit the molecular basis of this text-book example of biochemical adaptation. Previous hypotheses about the molecular basis of the evolved increase in Hb-O2 affinity were tested by engineering BHGspecific mutations into recombinant human Hb. This approach can provide important insights, but one problem with such ‘horizontal’ comparisons – swapping residues between proteins of contemporary species – is that the focal mutations are introduced into a sequence context that may not be evolutionarily relevant. If mutations have context-dependent effects, then introducing BHG-specific substitutions into human Hb may not recapitulate the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background in which they actually occurred. We used this approach to measure the independent and joint effects of amino acid substitutions that occurred in the reconstructed BHG ancestor. Measuring the additive and nonadditive effects of these substitutions enabled us to address several important evolutionary questions about molecular adaptation: (1) Do each of the substitutions contribute to the increased Hb-O2 affinity? If so, what are their relative effects? (2) Does the sequential order in which they occur make a difference? In other words, do the functional effects of mutations depend on which other substitutions have already occurred

    Epistasis Among Adaptive Mutations in Deer Mouse Hemoglobin

    Get PDF
    Epistatic interactions between mutant sites in the same protein can exert a strong influence on pathways of molecular evolution. We performed protein engineering experiments that revealed pervasive epistasis among segregating amino acid variants that contribute to adaptive functional variation in deer mouse hemoglobin (Hb). Amino acid mutations increased or decreased Hb-O2 affinity depending on the allelic state of other sites. Structural analysis revealed that epistasis for Hb-O2 affinity and allosteric regulatory control is attributable to indirect interactions between structurally remote sites. The prevalence of sign epistasis for fitness-related biochemical phenotypes has important implications for the evolutionary dynamics of protein polymorphism in natural populations

    The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    Get PDF
    The bar-headed goose (‘BHG’, Anser indicus) is renowned for its trans-Himalayan migratory flights, and the elevated hemoglobin (Hb)-O2 affinity of this species is thought to make a key contribution to its capacity for powered flight at elevations of ~9000 m. Here we revisit the molecular basis of this text-book example of biochemical adaptation. Previous hypotheses about the molecular basis of the evolved increase in Hb-O2 affinity were tested by engineering BHGspecific mutations into recombinant human Hb. This approach can provide important insights, but one problem with such ‘horizontal’ comparisons – swapping residues between proteins of contemporary species – is that the focal mutations are introduced into a sequence context that may not be evolutionarily relevant. If mutations have context-dependent effects, then introducing BHG-specific substitutions into human Hb may not recapitulate the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background in which they actually occurred. We used this approach to measure the independent and joint effects of amino acid substitutions that occurred in the reconstructed BHG ancestor. Measuring the additive and nonadditive effects of these substitutions enabled us to address several important evolutionary questions about molecular adaptation: (1) Do each of the substitutions contribute to the increased Hb-O2 affinity? If so, what are their relative effects? (2) Does the sequential order in which they occur make a difference? In other words, do the functional effects of mutations depend on which other substitutions have already occurred

    Hagfish Hemoglobins STRUCTURE, FUNCTION, AND OXYGEN-LINKED ASSOCIATION

    Get PDF
    Cyclostomes, hagfishes and lampreys, contain hemoglobins that are monomeric when oxygenated and polymerize to dimers or tetramers when deoxygenated. The three major hemoglobin components (HbI, HbII, and HbIII) from the hagfish Myxine glutinosa have been characterized and compared with lamprey Petromyzon marinus HbV, whose x-ray crystal structure has been solved in the deoxygenated, dimeric state (Heaslet, H. A., and Royer, W. E., Jr. (1999) Structure 7, 517-526). Of these three, HbII bears the highest sequence similarity to P. marinus HbV. In HbI and HbIII the distal histidine is substituted by a glutamine residue and additional substitutions occur in residues located at the deoxy dimer interface of P. marinus HbV. Infrared spectroscopy of the CO derivatives, used to probe the distal pocket fine structure, brings out a correlation between the CO stretching frequencies and the rates of CO combination. Ultracentrifugation studies show that HbI and HbIII are monomeric in both the oxygenated and deoxygenated states under all conditions studied, whereas deoxy HbII forms dimers at acidic pH values, like P. marinus HbV. Accordingly, the oxygen affinities of HbI and HbIII are independent of pH, whereas HbII displays a Bohr effect below pH 7.2. HbII also forms heterodimers with HbIII and heterotetramers with HbI. The functional counterparts of heteropolymer formation are cooperativity in oxygen binding and the oxygen-linked binding of protons and bicarbonate. The observed effects are explained on the basis of the x-ray structure of P. marinus HbV and the association behavior of site-specific mutants (Qiu, Y., Maillett, D. H., Knapp, J., Olson, J. S., and Riggs, A. F. (2000) J. Biol. Chem. 275, 13517-13528)

    Predictable convergence in hemoglobin function has unpredictable molecular underpinnings

    Get PDF
    To investigate the predictability of genetic adaptation, we examined the molecular basis of convergence in hemoglobin function in comparisons involving 56 avian taxa that have contrasting altitudinal range limits. Convergent increases in hemoglobin-oxygen affinity were pervasive among high-altitude taxa, but few such changes were attributable to parallel amino acid substitutions at key residues.Thus, predictable changes in biochemical phenotype do not have a predictable molecular basis. Experiments involving resurrected ancestral proteins revealed that historical substitutions have context-dependent effects, indicating that possible adaptive solutions are contingent on prior history. Mutations that produce an adaptive change in one species may represent precluded possibilities in other species because of differences in genetic background
    • …
    corecore