114 research outputs found

    Differential description and irreversibility of depolarizing light-matter interactions

    Full text link
    The widely-used Jones and Mueller differential polarization calculi allow non-depolarizing deterministic polarization interactions, known to be elements of the SO+(1,3)SO^+(1,3) Lorentz group, to be described in an efficient way. In this Letter, a stochastic differential Jones formalism is shown to provide a clear physical insight on light depolarization, which arises from the interaction of polarized light with a random medium showing fluctuating anisotropic properties. Based on this formalism, several "intrinsic" depolarization metrics naturally arise to efficiently characterize light depolarization in a medium, and an irreversibility property of depolarizing transformations is finally established

    Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog

    Full text link
    We present a contrast-maximizing optimal linear representation of polarimetric images obtained from a snapshot polarimetric camera for enhanced vision of a polarized light source in obscured weather conditions (fog, haze, cloud) over long distances (above 1 km). We quantitatively compare the gain in contrast obtained by different linear representations of the experimental polarimetric images taken during rapidly varying foggy conditions. It is shown that the adaptive image representation that depends on the correlation in background noise fluctuations in the two polarimetric images provides an optimal contrast enhancement over all weather conditions as opposed to a simple difference image which underperforms during low visibility conditions. Finally, we derive the analytic expression of the gain in contrast obtained with this optimal representation and show that the experimental results are in agreement with the assumed correlated Gaussian noise model

    Depolarization remote sensing by orthogonality breaking

    Full text link
    A new concept devoted to sensing the depolarization strength of materials from a single measurement is proposed and successfully validated on a variety of samples. It relies on the measurement of the orthogonality breaking between two orthogonal states of polarization after interaction with the material to be characterized. The two fields orthogonality being preserved after propagation in birefringent media, this concept is shown to be perfectly suited to depolarization remote sensing through fibers, opening the way to real time depolarization endoscopy.Comment: 5 pages, 4 figure

    Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusive media

    Full text link
    The efficiency of using intensity modulated light for estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium

    General Cram\'er-Rao bound for parameter estimation using Gaussian multimode quantum resources

    Full text link
    Multimode Gaussian quantum light, including multimode squeezed and/or multipartite quadrature entangled light, is a very general and powerful quantum resource with promising applications to quantum information processing and metrology involving continuous variables. In this paper, we determine the ultimate sensitivity in the estimation of any parameter when the information about this parameter is encoded in such Gaussian light, irrespective of the exact information extraction protocol used in the estimation. We then show that, for a given set of available quantum resources, the most economical way to maximize the sensitivity is to put the most squeezed state available in a well-defined light mode. This implies that it is not possible to take advantage of the existence of squeezed fluctuations in other modes, nor of quantum correlations and entanglement between different modes. We show that an appropriate homodyne detection scheme allows us to reach this Cramr-Rao bound. We apply finally these considerations to the problem of optimal phase estimation using interferometric techniques

    Contrast enhancement in polarimetric imaging with correlated noise fluctuations

    No full text
    International audienceWe compare the measurement precision of a polarimetric camera to that of a simple intensity camera when imaging a partially polarized light-mark embedded in an intense and partially polarized background. We show that the gain in measurement precision while using a polarimetric camera is maximized when the noise fluctuations on the two polarimetric channels are significantly correlated. Further, we implement a snapshot polarimetric camera for long distance imaging of a highly polarized light source through fog and compare the contrast obtained using various representations of the polarimetric images. We show that the representation that provides the best contrast depends on the visibility conditions and matches well with theoretical predictions

    Depolarization Sensing by Orthogonality Breaking: a microwave-photonics approach for snapshot polarimetric imaging

    No full text
    International audienceWe report a new depolarization sensing modality (DSOB), based on the concept of polarization orthogonality breaking, enabling direct measurement of a polarimetric contrast from a single measurement. The principle of this technique is described, as well as its benefits (compatibility with remote sensing through fibers, spectral agility…). Experimental validation of this technique on a fibred setup is extensively described and confirms its appropriateness for remote sensing through optical fibers. We eventually present the first DSOB images obtained in the visible range on a confocal microscope setup. The acquisition times reported are encouraging for future implementation in real-time

    Optimal estimation in polarimetric imaging in the presence of correlated noise fluctuations

    No full text
    International audienceWe quantitatively analyze how a polarization-sensitive imager can overcome the precision of a standard intensity camera when estimating a parameter on a polarized source over an intense background. We show that the gain is maximized when the two polarimetric channels are perturbed with significantly correlated noise fluctuations. An optimal estimator is derived and compared to standard intensity and polarimetric estimators

    Generalized Jones matrix method for homogeneous biaxial samples

    No full text
    International audienceThe generalized Jones matrix (GJM) is a recently introduced tool to describe linear transformations of three-dimensional light fields. Based on this framework, a specific method for obtaining the GJM of uniaxial anisotropic media was recently presented. However, the GJM of biaxial media had not been tackled so far, as the previous method made use of a simplified rotation matrix that lacks a degree of freedom in the three-dimensional rotation, thus being not suitable for calculating the GJM of biaxial media. In this work we propose a general method to derive the GJM of arbitrarily-oriented homogeneous biaxial media. It is based on the differential generalized Jones matrix (dGJM), which is the three-dimensional counterpart of the conventional differential Jones matrix. We show that the dGJM provides a simple and elegant way to describe uniaxial and biaxial media, with the capacity to model multiple simultaneous optical effects. The practical usefulness of this method is illustrated by the GJM modeling of the polarimetric properties of a negative uniaxial KDP crystal and a biaxial KTP crystal for any three-dimensional sample orientation. The results show that this method constitutes an advantageous and straightforward way to model biaxial media, which show a growing relevance for many interesting applications
    corecore