108 research outputs found

    Subcoronary versus supracoronary aortic stenosis. an experimental evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Valvular aortic stenosis is the most common cause of left ventricular hypertrophy due to gradually increasing pressure work. As the stenosis develop the left ventricular hypertrophy may lead to congestive heart failure, increased risk of perioperative complications and also increased risk of sudden death. A functional porcine model imitating the pathophysiological nature of valvular aortic stenosis is very much sought after in order to study the geometrical and pathophysiological changes of the left ventricle, timing of surgery and also pharmacological therapy in this patient group.</p> <p>Earlier we developed a porcine model for aortic stenosis based on supracoronary aortic banding, this model may not completely imitate the pathophysiological changes that occurs when valvular aortic stenosis is present including the coronary blood flow. It would therefore be desirable to optimize this model according to the localization of the stenosis.</p> <p>Methods</p> <p>In 20 kg pigs subcoronary (n = 8), supracoronary aortic banding (n = 8) or sham operation (n = 4) was preformed via a left lateral thoracotomy. The primary endpoint was left ventricular wall thickness; secondary endpoints were heart/body weight ratio and the systolic/diastolic blood flow ratio in the left anterior descending coronary. Statistical evaluation by oneway anova and unpaired t-test.</p> <p>Results</p> <p>Sub- and supracoronary banding induce an equal degree of left ventricular hypertrophy compared with the control group. The coronary blood flow ratio was slightly but not significantly higher in the supracoronary group (ratio = 0.45) compared with the two other groups (subcoronary ratio = 0.36, control ratio = 0.34).</p> <p>Conclusions</p> <p>A human pathophysiologically compatible porcine model for valvular aortic stenosis was developed by performing subcoronary aortic banding. Sub- and supracoronary aortic banding induce an equal degree of left ventricular hypertrophy. This model may be valid for experimental investigations of aortic valve stenosis but studies of left ventricular hypertrophy can be studied equally well by graduated constriction of the ascending aorta.</p

    Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

    Get PDF
    Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3040

    Hypobaric hypoxia regulates iron metabolism in rats

    No full text

    Dynamic Pathology of the Heart, A Personal Odyssey

    No full text

    Thallium-201 stress imaging in hypertensive patients.

    No full text

    Left ventricular structure and function in aortic valve disease.

    No full text
    corecore