327 research outputs found

    Chronic Stroke Survivors Improve Reaching Accuracy by Reducing Movement Variability at the Trained Movement Speed

    Get PDF
    Background. Recovery from stroke is often said to have "plateaued" after 6 to 12 months. Yet training can still improve performance even in the chronic phase. Here we investigate the biomechanics of accuracy improvements during a reaching task and test whether they are affected by the speed at which movements are practiced. Method. We trained 36 chronic stroke survivors (57.5 years, SD ± 11.5; 10 females) over 4 consecutive days to improve endpoint accuracy in an arm-reaching task (420 repetitions/day). Half of the group trained using fast movements and the other half slow movements. The trunk was constrained allowing only shoulder and elbow movement for task performance. Results. Before training, movements were variable, tended to undershoot the target, and terminated in contralateral workspace (flexion bias). Both groups improved movement accuracy by reducing trial-to-trial variability; however, change in endpoint bias (systematic error) was not significant. Improvements were greatest at the trained movement speed and generalized to other speeds in the fast training group. Small but significant improvements were observed in clinical measures in the fast training group. Conclusions. The reduction in trial-to-trial variability without an alteration to endpoint bias suggests that improvements are achieved by better control over motor commands within the existing repertoire. Thus, 4 days' training allows stroke survivors to improve movements that they can already make. Whether new movement patterns can be acquired in the chronic phase will need to be tested in longer term studies. We recommend that training needs to be performed at slow and fast movement speeds to enhance generalization

    The feasibility of measuring the activation of the trunk muscles in healthy older adults during trunk stability exercises

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the older adult population increases, the potential functional and clinical burden of trunk muscle dysfunction may be significant. An evaluation of risk factors including the impact of the trunk muscles in terms of their temporal firing patterns, amplitudes of activation, and contribution to spinal stability is required. Therefore, the specific purpose of this study was to assess the feasibility of measuring the activation of trunk muscles in healthy older adults during specific leg exercises with trunk stabilization.</p> <p>Methods</p> <p>12 asymptomatic adults 65 to 75 years of age were included in the study. Participants performed a series of trunk stability exercises, while bilateral activation of abdominal and back extensor muscles was recorded by 24 pairs of Meditrace™ surface electrodes. Maximal voluntary isometric contractions (MVIC) were performed for electromyographic (EMG) normalization purposes. EMG waveforms were generated and amplitude measures as a percentage of MVIC were calculated along with ensemble average profiles. 3D kinematics data were also recorded, using an electromagnetic sensor placed at the left lateral iliac crest. Furthermore, a qualitative assessment was conducted to establish the participant's ability to complete all experimental tasks.</p> <p>Results</p> <p>Excellent quality abdominal muscle activation data were recorded during the tasks. Participants performed the trunk stability exercises with an unsteady, intermittent motion, but were able to keep pelvic motion to less than 10°. The EMG amplitudes showed that during these exercises, on average, the older adults recruited their abdominal muscles from 15–34% of MVIC and back extensors to less than 10% of MVIC. There were similarities among the abdominal muscle profiles. No participants reported pain during the testing session, although 3 (25%) of the participants reported delayed onset muscle soreness during follow up that was not functionally limiting.</p> <p>Conclusion</p> <p>Older adults were able to successfully complete the trunk stability protocol that was developed for younger adults with some minor modifications. The collected EMG amplitudes were higher than those reported in the literature for young healthy adults. The temporal waveforms for the abdominal muscles showed a degree of synchrony among muscles, except for the early activation from the internal oblique prior to lifting the leg off the table.</p

    Reciprocity as a foundation of financial economics

    Get PDF
    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice

    Reliability of upright posture measurements in primary school children

    Get PDF
    BACKGROUND: Correct upright posture is considered to be a measure of good musculoskeletal health. Little is known about the usual variability of children's upright standing posture. The aim of this study was to assess differences between repeated measures of upright posture in a group of primary school children. METHODS: Sagittal plane photographs of usual, relaxed upright standing posture of 38 boys and girls aged 5–12 years were taken twice within an hour. Reflective markers were placed over the canthus, tragus, C7 spinous process, greater trochanter and lateral malleolus. Digitising software was used to calculate the x,y plane coordinates, from which five postural angles were calculated (trunk, neck, gaze, head on neck, lower limb). Height, weight, motor control estimates (as measured by the Brace Tests) and presence of recent pain were recorded for each child, and the association between the first test measure of posture angles and these factors was assessed using linear regression and ANOVA models. Multiple ANOVA models were applied to analyse the effect of repeated testing, and significant predictors on the angles. RESULTS: Four of the five postural angles (trunk, neck, head on neck, lower limb) were significantly influenced by age. As age was strongly associated with height (r(2 )= 0.84) and moderately associated with weight and motor control (r(2 )= 0.67, 0.56 respectively), these developmental parameters may well explain the age effect on angles. There was no relationship between age and pain reported on either the testing day, or recently, and there was no gender influence on any angle. There was no significant effect of repeated testing on any angle (ICC>0.93). None of the hypothesized predictors were associated with differences in angles from repeated testing. CONCLUSION: This study outlined the variability of relaxed upright standing posture of children aged 5–12 years, when measured twice in an hour. Age influenced the size of the angles but not the variability. While the subject numbers in this study are small, the findings provide useful information on which further studies in posture and its development in pre-adolescent children can be based

    Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Get PDF
    BACKGROUND: Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. METHOD: A randomised controlled experimental study was conducted on 250 adolescents (12–18 years), randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight) and positions (backpack centred at T7, T12 or L3). Sagittal plane photographs were taken of unloaded standing posture (baseline), and standing posture under the experimental conditions. Posture was quantified from the x (horizontal) coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. RESULTS: Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal) displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. CONCLUSION: There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or hip level. There is no evidence for the 10% body weight limit

    Postural development in school children: a cross-sectional study

    Get PDF
    BACKGROUND: Little information on quantitative sagittal plane postural alignment and evolution in children exists. The objectives of this study are to document the evolution of upright, static, sagittal posture in children and to identify possible critical phases of postural evolution (maturation). METHODS: A total of 1084 children (aged 4–12 years) received a sagittal postural evaluation with the Biotonix postural analysis system. Data were retrieved from the Biotonix internet database. Children were stratified and analyzed by years of age with n = 36 in the youngest age group (4 years) and n = 184 in the oldest age group (12 years). Children were analyzed in the neutral upright posture. Variables measured were sagittal translation distances in millimeters of: the knee relative to the tarsal joint, pelvis relative to the tarsal joint, shoulder relative to the tarsal joint, and head relative to the tarsal joint. A two-way factorial ANOVA was used to test for age and gender effects on posture, while polynomial trend analyses were used to test for increased postural displacements with years of age. RESULTS: Two-way ANOVA yielded a significant main effect of age for all 4 sagittal postural variables and gender for all variables except head translation. No age × gender interaction was found. Polynomial trend analyses showed a significant linear association between child age and all four postural variables: anterior head translation (p < 0.001), anterior shoulder translation (p < 0.001), anterior pelvic translation (p < 0.001), anterior knee translation (p < 0.001). Between the ages of 11 and 12 years, for anterior knee translation, T-test post hoc analysis revealed only one significant rough break in the continuity of the age related trend. CONCLUSION: A significant linear trend for increasing sagittal plane postural translations of the head, thorax, pelvis, and knee was found as children age from 4 years to 12 years. These postural translations provide preliminary normative data for the alignment of a child's sagittal plane posture

    The relationship between hip abductor muscle strength and iliotibial band tightness in individuals with low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shortening of the iliotibial band (ITB) has been considered to be associated with low back pain (LBP). It is theorized that ITB tightness in individuals with LBP is a compensatory mechanism following hip abductor muscle weakness. However, no study has clinically examined this theory. The purpose of this study was to investigate the muscle imbalance of hip abductor muscle weakness and ITB tightness in subjects with LBP.</p> <p>Methods</p> <p>A total of 300 subjects with and without LBP between the ages of 20 and 60 participated in this cross-sectional study. Subjects were categorized in three groups: LBP with ITB tightness (n = 100), LBP without ITB tightness (n = 100) and no LBP (n = 100). Hip abductor muscle strength was measured in all subjects.</p> <p>Results</p> <p>Analysis of Covariance (ANCOVA) with the body mass index (BMI) as the covariate revealed significant difference in hip abductor strength between three groups (P < 0.001). Post hoc analysis showed no significant difference in hip abductor muscle strength between the LBP subjects with and without ITB tightness (P = 0.59). However, subjects with no LBP had significantly stronger hip abductor muscle strength compared to subjects with LBP with ITB tightness (P < 0.001) and those with LBP without ITB tightness (P < 0.001).</p> <p>Conclusion</p> <p>The relationship between ITB tightness and hip abductor weakness in patients with LBP is not supported as assumed in theory. More clinical studies are needed to assess the theory of muscle imbalance of hip abductor weakness and ITB tightness in LBP.</p
    corecore