17,073 research outputs found

    The ion motion in self-modulated plasma wakefield accelerators

    Get PDF
    The effects of plasma ion motion in self-modulated plasma based accelerators is examined. An analytical model describing ion motion in the narrow beam limit is developed, and confirmed through multi-dimensional particle-in-cell simulations. It is shown that the ion motion can lead to the early saturation of the self-modulation instability, and to the suppression of the accelerating gradients. This can reduce the total energy that can be transformed into kinetic energy of accelerated particles. For the parameters of future proton-driven plasma accelerator experiments, the ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion in future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Very High Mach Number Electrostatic Shocks in Collisionless Plasmas

    Full text link
    The kinetic theory of collisionless electrostatic shocks resulting from the collision of plasma slabs with different temperatures and densities is presented. The theoretical results are confirmed by self-consistent particle-in-cell simulations, revealing the formation and stable propagation of electrostatic shocks with very high Mach numbers (M10M \gg 10), well above the predictions of the classical theories for electrostatic shocks.Comment: 6 pages, submitted to Phys. Rev. Let

    Ion dynamics and acceleration in relativistic shocks

    Get PDF
    Ab-initio numerical study of collisionless shocks in electron-ion unmagnetized plasmas is performed with fully relativistic particle in cell simulations. The main properties of the shock are shown, focusing on the implications for particle acceleration. Results from previous works with a distinct numerical framework are recovered, including the shock structure and the overall acceleration features. Particle tracking is then used to analyze in detail the particle dynamics and the acceleration process. We observe an energy growth in time that can be reproduced by a Fermi-like mechanism with a reduced number of scatterings, in which the time between collisions increases as the particle gains energy, and the average acceleration efficiency is not ideal. The in depth analysis of the underlying physics is relevant to understand the generation of high energy cosmic rays, the impact on the astrophysical shock dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure

    A global simulation for laser driven MeV electrons in 50μm50\mu m-diameter fast ignition targets

    Full text link
    The results from 2.5-dimensional Particle-in-Cell simulations for the interaction of a picosecond-long ignition laser pulse with a plasma pellet of 50-μm\mu m diameter and 40 critical density are presented. The high density pellet is surrounded by an underdense corona and is isolated by a vacuum region from the simulation box boundary. The laser pulse is shown to filament and create density channels on the laser-plasma interface. The density channels increase the laser absorption efficiency and help generate an energetic electron distribution with a large angular spread. The combined distribution of the forward-going energetic electrons and the induced return electrons is marginally unstable to the current filament instability. The ions play an important role in neutralizing the space charges induced by the the temperature disparity between different electron groups. No global coalescing of the current filaments resulted from the instability is observed, consistent with the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006

    Low energy n-\nuc{3}{H} scattering : a novel testground for nuclear interaction

    Full text link
    The low energy n-\nuc{3}{H} elastic cross sections near the resonance peak are calculated by solving the 4-nucleon problem with realistic NN interactions. Three different methods -- Alt, Grassberger and Shandas (AGS), Hyperspherical Harmonics and Faddeev-Yakubovsky -- have been used and their respective results are compared. We conclude on a failure of the existing NN forces to reproduce the n-\nuc{3}{H} total cross section.Comment: To be published in Phys. Rev.

    Beam loading in the nonlinear regime of plasma-based acceleration

    Full text link
    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the Particle-In-Cell code OSIRIS.Comment: 5 pages, 2 figures, to appear in Physical Review Letter
    corecore