6,780 research outputs found

    Gas Chromatographic-Mass Spectrometric Analysis of Essential Oil of Jasminum officinale L var Grandiflorum Flower

    Get PDF
    Purpose: To analyze the essential oil composition of the flower of Jasminum officinale L. var. grandifloroum L. (Jasminum grandiflorum) by gas chromatography-mass spectrometry (GC-MS).Methods: The optimum GC-MS conditions used for the analysis were 250 oC inlet temperature, 150 oC MSD detector temperature, and GC oven temperature program as follows: 100 oC initial temperature, increased to 270 oC at 4 oC/min, final temperature 270 oC and held for 7.5 min.Results: Thirty compounds were identified, representing 99.28 % of the oil content. The major volatile components of the flower were 3,7,11,15- tetramethyl-2-hexadecen-1-ol(phytol) (25.77 %), 3,7,11- trimethyldodeca -1,6,10-trien-3-ol (12.54 %) and 3,7,11,15- tetramethyl -1-Hexadecen-3-ol (12.42 %).Conclusion: The results show that phytol is the major volatile component of Jasminum grandiflorum.Keywords: Jasminum grandiflorum, Essential oil, Gas chromatography-mass spectrometr

    Intercultural New Media Studies: The Next Frontier in intercultural Communication

    Get PDF
    New media (ICT\u27s) are transforming communication across cultures. Despite this revolution in cross cultural contact, communication researchers have largely ignored the impact of new media on intercultural communication. This groundbreaking article defines the parameters of a new field of inquiry called Intercultural New Media Studies (INMS), which explores the intersection between ICT\u27s and intercultural communication. Composed of two research areas—(1) new media and intercultural communication theory and (2) culture and new media—INMS investigates new digital theories of intercultural contact as well as refines and expands twentieth-century intercultural communication theories, examining their salience in a digital world. INMS promises to increase our understanding of intercultural communication in a new media age and is the next frontier in intercultural communication

    Penetration Enhancement Effect of Turpentine Oil on Transdermal Film of Ketorolac

    Get PDF
    Purpose: To prepare transdermal films of ketorolac tromethamine (KT) and study the effect of turpentine oil as a penetration enhancer for the drug.Methods: Transdermal films of KT were prepared with Carbopol-934 and ethyl cellulose, with turpentine oil as the penetration enhancer, using solvent evaporation method. The films were characterized for physicochemical properties, ex vivo permeation, as well as in vivo anti-inflammatory and analgesic activities in Wistar rats. Results: The transdermal films were uniform in weight and thickness, flat, with high drug content (93.9 to 98.5 %) and of high folding endurance (134.0 to 180.0). Drug permeation through excised rat abdominal skin was prolonged, with the total drug release ranging from 58.88 to 88.98 % in 24 h. The films containing penetration enhancer showed higher drug permeation than the one without the enhancer; furthermore, drug permeation increased with increase in the concentration of the enhancer. The films were non-irritant to the skin. The transdermal films prepared with permeation enhancers showed greater anti-inflammatory activity (87.55 ± 2.50 and 83.24 ± 2.29 % inhibition of rat paw edema at the end of 12 h for formulations F2 and F3, respectively, compared to that of the formulation without enhancer with 69.99 %) as well as greater analgesic activity (quicker onset of analgesia in 1.5 h with longer duration of 10 to 12 h).Conclusion: Transdermal films of ketorolac have a potential for use in the treatment of pain andinflammation. Incorporation of turpentine oil in the films enhances not only drug flux but also analgesic and anti-inflammatory activities in rats

    Transport of F1-ATPase subunit β into mitochondria depends on both a membrane potential and nucleoside triphosphates

    Get PDF
    Transport of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane requires a mitochondrial membrane potential. We have studied whether additional energy sources are also necessary for protein translocation. Reticulocyte lysate (containing radiolabelled precursor proteins) and mitochondria were depleted of ATP by pre-incubation with apyrase. A membrane potential was then established by the addition of substrates of the electron transport chain. Oligomycin was included to prevent dissipation of Δψ by the action of the F0F1-ATPase. Under these conditions, import of subunit β of F1-ATPase (F1β) was inhibited. Addition of ATP or GTP restored import. When the membrane potential was destroyed, however, the import of F1β was completely inhibited even in the presence of ATP. We therefore conclude that the import of F1β depends on both nucleoside triphosphates and a membrane potential

    The d' dibaryon in the quark-delocalization, color-screening model

    Full text link
    We study the questions of the existence and mass of the proposed d′(IJP=00−)d' (IJ^P=00^-) dibaryon in the quark-delocalization, color-screening model (QDCSM). The transformation between physical and symmetry bases has been extended to the cases beyond the SU(2) orbital symmetry. Using parameters fixed by baryon properties and NNNN scattering, we find a mild attraction in the IJP=00−IJ^P=00^- channel, but it is not strong enough to form a deeply bound state as proposed for the d′d' state. Nor does the (isospin) I=2 NΔ\Delta configuration have a deeply bound state. These results show that if a narrow dibaryon d′d' state does exist, it must have a more complicated structure.Comment: 12 pp. latex, no figs., 2 tables, additional refs., Report-no was adde

    Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding

    Get PDF
    High-performance electromagnetic interference (EMI) shielding material that that can function properly under extreme working conditions is critical for their practical applications. Herein, flexible and highly conductive meta-aramid (PMIA) nonwoven fabrics were fabricated by combining polydopamine (PDA) modification and electroless silver plating. The PDA modification greatly enhanced the efficient deposition of silver nanoparticles (AgNPs) and the interfacial cohesion between the AgNPs and the PMIA fibers. The silver-coated PMIA nonwoven fabric exhibited an electrical conductivity as high as 0.29 Ω/sq, an excellent EMI shielding effectiveness (SE) of 92.6 dB and a high absolute EMI SE of 8194.7 dB cm^{2} g^{−1}. In addition, the silver-coated PMIA nonwoven fabric maintained high electrical conductivity and EMI SE after being subjected to washing, bending and torsion deformations, high/low temperature, strong acidic/alkaline solutions and different organic solvents. These results have clearly demonstrated that PMIA nonwoven fabric can be made highly electrically conductive by using a simple and highly scalable method. It holds great promise for the applications in EMI shielding materials that can be used in various harsh conditions
    • …
    corecore